This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axdc4 . (Contributed by Mario Carneiro, 31-Jan-2013) (Revised by Mario Carneiro, 16-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axdc4lem.1 | |- A e. _V |
|
| axdc4lem.2 | |- G = ( n e. _om , x e. A |-> ( { suc n } X. ( n F x ) ) ) |
||
| Assertion | axdc4lem | |- ( ( C e. A /\ F : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc4lem.1 | |- A e. _V |
|
| 2 | axdc4lem.2 | |- G = ( n e. _om , x e. A |-> ( { suc n } X. ( n F x ) ) ) |
|
| 3 | peano1 | |- (/) e. _om |
|
| 4 | opelxpi | |- ( ( (/) e. _om /\ C e. A ) -> <. (/) , C >. e. ( _om X. A ) ) |
|
| 5 | 3 4 | mpan | |- ( C e. A -> <. (/) , C >. e. ( _om X. A ) ) |
| 6 | simp2 | |- ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> n e. _om ) |
|
| 7 | fovcdm | |- ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> ( n F x ) e. ( ~P A \ { (/) } ) ) |
|
| 8 | peano2 | |- ( n e. _om -> suc n e. _om ) |
|
| 9 | 8 | snssd | |- ( n e. _om -> { suc n } C_ _om ) |
| 10 | eldifi | |- ( ( n F x ) e. ( ~P A \ { (/) } ) -> ( n F x ) e. ~P A ) |
|
| 11 | 1 | elpw2 | |- ( ( n F x ) e. ~P A <-> ( n F x ) C_ A ) |
| 12 | xpss12 | |- ( ( { suc n } C_ _om /\ ( n F x ) C_ A ) -> ( { suc n } X. ( n F x ) ) C_ ( _om X. A ) ) |
|
| 13 | 11 12 | sylan2b | |- ( ( { suc n } C_ _om /\ ( n F x ) e. ~P A ) -> ( { suc n } X. ( n F x ) ) C_ ( _om X. A ) ) |
| 14 | 9 10 13 | syl2an | |- ( ( n e. _om /\ ( n F x ) e. ( ~P A \ { (/) } ) ) -> ( { suc n } X. ( n F x ) ) C_ ( _om X. A ) ) |
| 15 | snex | |- { suc n } e. _V |
|
| 16 | ovex | |- ( n F x ) e. _V |
|
| 17 | 15 16 | xpex | |- ( { suc n } X. ( n F x ) ) e. _V |
| 18 | 17 | elpw | |- ( ( { suc n } X. ( n F x ) ) e. ~P ( _om X. A ) <-> ( { suc n } X. ( n F x ) ) C_ ( _om X. A ) ) |
| 19 | 14 18 | sylibr | |- ( ( n e. _om /\ ( n F x ) e. ( ~P A \ { (/) } ) ) -> ( { suc n } X. ( n F x ) ) e. ~P ( _om X. A ) ) |
| 20 | 6 7 19 | syl2anc | |- ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> ( { suc n } X. ( n F x ) ) e. ~P ( _om X. A ) ) |
| 21 | eldifn | |- ( ( n F x ) e. ( ~P A \ { (/) } ) -> -. ( n F x ) e. { (/) } ) |
|
| 22 | 16 | elsn | |- ( ( n F x ) e. { (/) } <-> ( n F x ) = (/) ) |
| 23 | 22 | necon3bbii | |- ( -. ( n F x ) e. { (/) } <-> ( n F x ) =/= (/) ) |
| 24 | vex | |- n e. _V |
|
| 25 | 24 | sucex | |- suc n e. _V |
| 26 | 25 | snnz | |- { suc n } =/= (/) |
| 27 | xpnz | |- ( ( { suc n } =/= (/) /\ ( n F x ) =/= (/) ) <-> ( { suc n } X. ( n F x ) ) =/= (/) ) |
|
| 28 | 27 | biimpi | |- ( ( { suc n } =/= (/) /\ ( n F x ) =/= (/) ) -> ( { suc n } X. ( n F x ) ) =/= (/) ) |
| 29 | 26 28 | mpan | |- ( ( n F x ) =/= (/) -> ( { suc n } X. ( n F x ) ) =/= (/) ) |
| 30 | 23 29 | sylbi | |- ( -. ( n F x ) e. { (/) } -> ( { suc n } X. ( n F x ) ) =/= (/) ) |
| 31 | 17 | elsn | |- ( ( { suc n } X. ( n F x ) ) e. { (/) } <-> ( { suc n } X. ( n F x ) ) = (/) ) |
| 32 | 31 | necon3bbii | |- ( -. ( { suc n } X. ( n F x ) ) e. { (/) } <-> ( { suc n } X. ( n F x ) ) =/= (/) ) |
| 33 | 30 32 | sylibr | |- ( -. ( n F x ) e. { (/) } -> -. ( { suc n } X. ( n F x ) ) e. { (/) } ) |
| 34 | 7 21 33 | 3syl | |- ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> -. ( { suc n } X. ( n F x ) ) e. { (/) } ) |
| 35 | 20 34 | eldifd | |- ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> ( { suc n } X. ( n F x ) ) e. ( ~P ( _om X. A ) \ { (/) } ) ) |
| 36 | 35 | 3expib | |- ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) -> ( ( n e. _om /\ x e. A ) -> ( { suc n } X. ( n F x ) ) e. ( ~P ( _om X. A ) \ { (/) } ) ) ) |
| 37 | 36 | ralrimivv | |- ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) -> A. n e. _om A. x e. A ( { suc n } X. ( n F x ) ) e. ( ~P ( _om X. A ) \ { (/) } ) ) |
| 38 | 2 | fmpo | |- ( A. n e. _om A. x e. A ( { suc n } X. ( n F x ) ) e. ( ~P ( _om X. A ) \ { (/) } ) <-> G : ( _om X. A ) --> ( ~P ( _om X. A ) \ { (/) } ) ) |
| 39 | 37 38 | sylib | |- ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) -> G : ( _om X. A ) --> ( ~P ( _om X. A ) \ { (/) } ) ) |
| 40 | dcomex | |- _om e. _V |
|
| 41 | 40 1 | xpex | |- ( _om X. A ) e. _V |
| 42 | 41 | axdc3 | |- ( ( <. (/) , C >. e. ( _om X. A ) /\ G : ( _om X. A ) --> ( ~P ( _om X. A ) \ { (/) } ) ) -> E. h ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) |
| 43 | 5 39 42 | syl2an | |- ( ( C e. A /\ F : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> E. h ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) |
| 44 | 2ndcof | |- ( h : _om --> ( _om X. A ) -> ( 2nd o. h ) : _om --> A ) |
|
| 45 | 44 | 3ad2ant1 | |- ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( 2nd o. h ) : _om --> A ) |
| 46 | 45 | adantl | |- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( 2nd o. h ) : _om --> A ) |
| 47 | fex2 | |- ( ( ( 2nd o. h ) : _om --> A /\ _om e. _V /\ A e. _V ) -> ( 2nd o. h ) e. _V ) |
|
| 48 | 40 1 47 | mp3an23 | |- ( ( 2nd o. h ) : _om --> A -> ( 2nd o. h ) e. _V ) |
| 49 | 46 48 | syl | |- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( 2nd o. h ) e. _V ) |
| 50 | fvco3 | |- ( ( h : _om --> ( _om X. A ) /\ (/) e. _om ) -> ( ( 2nd o. h ) ` (/) ) = ( 2nd ` ( h ` (/) ) ) ) |
|
| 51 | 3 50 | mpan2 | |- ( h : _om --> ( _om X. A ) -> ( ( 2nd o. h ) ` (/) ) = ( 2nd ` ( h ` (/) ) ) ) |
| 52 | 51 | 3ad2ant1 | |- ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( 2nd o. h ) ` (/) ) = ( 2nd ` ( h ` (/) ) ) ) |
| 53 | fveq2 | |- ( ( h ` (/) ) = <. (/) , C >. -> ( 2nd ` ( h ` (/) ) ) = ( 2nd ` <. (/) , C >. ) ) |
|
| 54 | 53 | 3ad2ant2 | |- ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( 2nd ` ( h ` (/) ) ) = ( 2nd ` <. (/) , C >. ) ) |
| 55 | 52 54 | eqtrd | |- ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( 2nd o. h ) ` (/) ) = ( 2nd ` <. (/) , C >. ) ) |
| 56 | op2ndg | |- ( ( (/) e. _om /\ C e. A ) -> ( 2nd ` <. (/) , C >. ) = C ) |
|
| 57 | 3 56 | mpan | |- ( C e. A -> ( 2nd ` <. (/) , C >. ) = C ) |
| 58 | 55 57 | sylan9eqr | |- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( ( 2nd o. h ) ` (/) ) = C ) |
| 59 | nfv | |- F/ k C e. A |
|
| 60 | nfv | |- F/ k h : _om --> ( _om X. A ) |
|
| 61 | nfv | |- F/ k ( h ` (/) ) = <. (/) , C >. |
|
| 62 | nfra1 | |- F/ k A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) |
|
| 63 | 60 61 62 | nf3an | |- F/ k ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) |
| 64 | 59 63 | nfan | |- F/ k ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) |
| 65 | fveq2 | |- ( m = (/) -> ( h ` m ) = ( h ` (/) ) ) |
|
| 66 | opeq1 | |- ( m = (/) -> <. m , z >. = <. (/) , z >. ) |
|
| 67 | 65 66 | eqeq12d | |- ( m = (/) -> ( ( h ` m ) = <. m , z >. <-> ( h ` (/) ) = <. (/) , z >. ) ) |
| 68 | 67 | exbidv | |- ( m = (/) -> ( E. z ( h ` m ) = <. m , z >. <-> E. z ( h ` (/) ) = <. (/) , z >. ) ) |
| 69 | fveq2 | |- ( m = i -> ( h ` m ) = ( h ` i ) ) |
|
| 70 | opeq1 | |- ( m = i -> <. m , z >. = <. i , z >. ) |
|
| 71 | 69 70 | eqeq12d | |- ( m = i -> ( ( h ` m ) = <. m , z >. <-> ( h ` i ) = <. i , z >. ) ) |
| 72 | 71 | exbidv | |- ( m = i -> ( E. z ( h ` m ) = <. m , z >. <-> E. z ( h ` i ) = <. i , z >. ) ) |
| 73 | fveq2 | |- ( m = suc i -> ( h ` m ) = ( h ` suc i ) ) |
|
| 74 | opeq1 | |- ( m = suc i -> <. m , z >. = <. suc i , z >. ) |
|
| 75 | 73 74 | eqeq12d | |- ( m = suc i -> ( ( h ` m ) = <. m , z >. <-> ( h ` suc i ) = <. suc i , z >. ) ) |
| 76 | 75 | exbidv | |- ( m = suc i -> ( E. z ( h ` m ) = <. m , z >. <-> E. z ( h ` suc i ) = <. suc i , z >. ) ) |
| 77 | opeq2 | |- ( z = C -> <. (/) , z >. = <. (/) , C >. ) |
|
| 78 | 77 | eqeq2d | |- ( z = C -> ( ( h ` (/) ) = <. (/) , z >. <-> ( h ` (/) ) = <. (/) , C >. ) ) |
| 79 | 78 | spcegv | |- ( C e. A -> ( ( h ` (/) ) = <. (/) , C >. -> E. z ( h ` (/) ) = <. (/) , z >. ) ) |
| 80 | 79 | imp | |- ( ( C e. A /\ ( h ` (/) ) = <. (/) , C >. ) -> E. z ( h ` (/) ) = <. (/) , z >. ) |
| 81 | 80 | 3ad2antr2 | |- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> E. z ( h ` (/) ) = <. (/) , z >. ) |
| 82 | fveq2 | |- ( ( h ` i ) = <. i , z >. -> ( G ` ( h ` i ) ) = ( G ` <. i , z >. ) ) |
|
| 83 | df-ov | |- ( i G z ) = ( G ` <. i , z >. ) |
|
| 84 | 82 83 | eqtr4di | |- ( ( h ` i ) = <. i , z >. -> ( G ` ( h ` i ) ) = ( i G z ) ) |
| 85 | 84 | adantl | |- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( G ` ( h ` i ) ) = ( i G z ) ) |
| 86 | simplr | |- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> i e. _om ) |
|
| 87 | ffvelcdm | |- ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( h ` i ) e. ( _om X. A ) ) |
|
| 88 | eleq1 | |- ( ( h ` i ) = <. i , z >. -> ( ( h ` i ) e. ( _om X. A ) <-> <. i , z >. e. ( _om X. A ) ) ) |
|
| 89 | opelxp2 | |- ( <. i , z >. e. ( _om X. A ) -> z e. A ) |
|
| 90 | 88 89 | biimtrdi | |- ( ( h ` i ) = <. i , z >. -> ( ( h ` i ) e. ( _om X. A ) -> z e. A ) ) |
| 91 | 87 90 | mpan9 | |- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> z e. A ) |
| 92 | suceq | |- ( n = i -> suc n = suc i ) |
|
| 93 | 92 | sneqd | |- ( n = i -> { suc n } = { suc i } ) |
| 94 | oveq1 | |- ( n = i -> ( n F x ) = ( i F x ) ) |
|
| 95 | 93 94 | xpeq12d | |- ( n = i -> ( { suc n } X. ( n F x ) ) = ( { suc i } X. ( i F x ) ) ) |
| 96 | oveq2 | |- ( x = z -> ( i F x ) = ( i F z ) ) |
|
| 97 | 96 | xpeq2d | |- ( x = z -> ( { suc i } X. ( i F x ) ) = ( { suc i } X. ( i F z ) ) ) |
| 98 | snex | |- { suc i } e. _V |
|
| 99 | ovex | |- ( i F z ) e. _V |
|
| 100 | 98 99 | xpex | |- ( { suc i } X. ( i F z ) ) e. _V |
| 101 | 95 97 2 100 | ovmpo | |- ( ( i e. _om /\ z e. A ) -> ( i G z ) = ( { suc i } X. ( i F z ) ) ) |
| 102 | 86 91 101 | syl2anc | |- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( i G z ) = ( { suc i } X. ( i F z ) ) ) |
| 103 | 85 102 | eqtrd | |- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( G ` ( h ` i ) ) = ( { suc i } X. ( i F z ) ) ) |
| 104 | suceq | |- ( k = i -> suc k = suc i ) |
|
| 105 | 104 | fveq2d | |- ( k = i -> ( h ` suc k ) = ( h ` suc i ) ) |
| 106 | 2fveq3 | |- ( k = i -> ( G ` ( h ` k ) ) = ( G ` ( h ` i ) ) ) |
|
| 107 | 105 106 | eleq12d | |- ( k = i -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) <-> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) ) |
| 108 | 107 | rspcv | |- ( i e. _om -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) ) |
| 109 | 108 | ad2antlr | |- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) ) |
| 110 | eleq2 | |- ( ( G ` ( h ` i ) ) = ( { suc i } X. ( i F z ) ) -> ( ( h ` suc i ) e. ( G ` ( h ` i ) ) <-> ( h ` suc i ) e. ( { suc i } X. ( i F z ) ) ) ) |
|
| 111 | elxp | |- ( ( h ` suc i ) e. ( { suc i } X. ( i F z ) ) <-> E. s E. t ( ( h ` suc i ) = <. s , t >. /\ ( s e. { suc i } /\ t e. ( i F z ) ) ) ) |
|
| 112 | velsn | |- ( s e. { suc i } <-> s = suc i ) |
|
| 113 | opeq1 | |- ( s = suc i -> <. s , t >. = <. suc i , t >. ) |
|
| 114 | 112 113 | sylbi | |- ( s e. { suc i } -> <. s , t >. = <. suc i , t >. ) |
| 115 | 114 | eqeq2d | |- ( s e. { suc i } -> ( ( h ` suc i ) = <. s , t >. <-> ( h ` suc i ) = <. suc i , t >. ) ) |
| 116 | 115 | biimpac | |- ( ( ( h ` suc i ) = <. s , t >. /\ s e. { suc i } ) -> ( h ` suc i ) = <. suc i , t >. ) |
| 117 | 116 | adantrr | |- ( ( ( h ` suc i ) = <. s , t >. /\ ( s e. { suc i } /\ t e. ( i F z ) ) ) -> ( h ` suc i ) = <. suc i , t >. ) |
| 118 | 117 | eximi | |- ( E. t ( ( h ` suc i ) = <. s , t >. /\ ( s e. { suc i } /\ t e. ( i F z ) ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) |
| 119 | 118 | exlimiv | |- ( E. s E. t ( ( h ` suc i ) = <. s , t >. /\ ( s e. { suc i } /\ t e. ( i F z ) ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) |
| 120 | 111 119 | sylbi | |- ( ( h ` suc i ) e. ( { suc i } X. ( i F z ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) |
| 121 | 110 120 | biimtrdi | |- ( ( G ` ( h ` i ) ) = ( { suc i } X. ( i F z ) ) -> ( ( h ` suc i ) e. ( G ` ( h ` i ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) ) |
| 122 | 103 109 121 | sylsyld | |- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) ) |
| 123 | 122 | expcom | |- ( ( h ` i ) = <. i , z >. -> ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) ) ) |
| 124 | 123 | exlimiv | |- ( E. z ( h ` i ) = <. i , z >. -> ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) ) ) |
| 125 | 124 | com3l | |- ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( E. z ( h ` i ) = <. i , z >. -> E. t ( h ` suc i ) = <. suc i , t >. ) ) ) |
| 126 | opeq2 | |- ( t = z -> <. suc i , t >. = <. suc i , z >. ) |
|
| 127 | 126 | eqeq2d | |- ( t = z -> ( ( h ` suc i ) = <. suc i , t >. <-> ( h ` suc i ) = <. suc i , z >. ) ) |
| 128 | 127 | cbvexvw | |- ( E. t ( h ` suc i ) = <. suc i , t >. <-> E. z ( h ` suc i ) = <. suc i , z >. ) |
| 129 | 125 128 | syl8ib | |- ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) |
| 130 | 129 | impancom | |- ( ( h : _om --> ( _om X. A ) /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( i e. _om -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) |
| 131 | 130 | 3adant2 | |- ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( i e. _om -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) |
| 132 | 131 | adantl | |- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( i e. _om -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) |
| 133 | 132 | com12 | |- ( i e. _om -> ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) |
| 134 | 68 72 76 81 133 | finds2 | |- ( m e. _om -> ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> E. z ( h ` m ) = <. m , z >. ) ) |
| 135 | 134 | com12 | |- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( m e. _om -> E. z ( h ` m ) = <. m , z >. ) ) |
| 136 | 135 | ralrimiv | |- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> A. m e. _om E. z ( h ` m ) = <. m , z >. ) |
| 137 | fveq2 | |- ( m = k -> ( h ` m ) = ( h ` k ) ) |
|
| 138 | opeq1 | |- ( m = k -> <. m , z >. = <. k , z >. ) |
|
| 139 | 137 138 | eqeq12d | |- ( m = k -> ( ( h ` m ) = <. m , z >. <-> ( h ` k ) = <. k , z >. ) ) |
| 140 | 139 | exbidv | |- ( m = k -> ( E. z ( h ` m ) = <. m , z >. <-> E. z ( h ` k ) = <. k , z >. ) ) |
| 141 | 140 | rspccv | |- ( A. m e. _om E. z ( h ` m ) = <. m , z >. -> ( k e. _om -> E. z ( h ` k ) = <. k , z >. ) ) |
| 142 | 136 141 | syl | |- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( k e. _om -> E. z ( h ` k ) = <. k , z >. ) ) |
| 143 | 142 | 3impia | |- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> E. z ( h ` k ) = <. k , z >. ) |
| 144 | simp21 | |- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> h : _om --> ( _om X. A ) ) |
|
| 145 | simp3 | |- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> k e. _om ) |
|
| 146 | rspa | |- ( ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) /\ k e. _om ) -> ( h ` suc k ) e. ( G ` ( h ` k ) ) ) |
|
| 147 | 146 | 3ad2antl3 | |- ( ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( h ` suc k ) e. ( G ` ( h ` k ) ) ) |
| 148 | 147 | 3adant1 | |- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( h ` suc k ) e. ( G ` ( h ` k ) ) ) |
| 149 | simpl | |- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( h ` k ) = <. k , z >. ) |
|
| 150 | 149 | fveq2d | |- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( G ` ( h ` k ) ) = ( G ` <. k , z >. ) ) |
| 151 | simprr | |- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> k e. _om ) |
|
| 152 | eleq1 | |- ( ( h ` k ) = <. k , z >. -> ( ( h ` k ) e. ( _om X. A ) <-> <. k , z >. e. ( _om X. A ) ) ) |
|
| 153 | opelxp2 | |- ( <. k , z >. e. ( _om X. A ) -> z e. A ) |
|
| 154 | 152 153 | biimtrdi | |- ( ( h ` k ) = <. k , z >. -> ( ( h ` k ) e. ( _om X. A ) -> z e. A ) ) |
| 155 | ffvelcdm | |- ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( h ` k ) e. ( _om X. A ) ) |
|
| 156 | 154 155 | impel | |- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> z e. A ) |
| 157 | df-ov | |- ( k G z ) = ( G ` <. k , z >. ) |
|
| 158 | suceq | |- ( n = k -> suc n = suc k ) |
|
| 159 | 158 | sneqd | |- ( n = k -> { suc n } = { suc k } ) |
| 160 | oveq1 | |- ( n = k -> ( n F x ) = ( k F x ) ) |
|
| 161 | 159 160 | xpeq12d | |- ( n = k -> ( { suc n } X. ( n F x ) ) = ( { suc k } X. ( k F x ) ) ) |
| 162 | oveq2 | |- ( x = z -> ( k F x ) = ( k F z ) ) |
|
| 163 | 162 | xpeq2d | |- ( x = z -> ( { suc k } X. ( k F x ) ) = ( { suc k } X. ( k F z ) ) ) |
| 164 | snex | |- { suc k } e. _V |
|
| 165 | ovex | |- ( k F z ) e. _V |
|
| 166 | 164 165 | xpex | |- ( { suc k } X. ( k F z ) ) e. _V |
| 167 | 161 163 2 166 | ovmpo | |- ( ( k e. _om /\ z e. A ) -> ( k G z ) = ( { suc k } X. ( k F z ) ) ) |
| 168 | 157 167 | eqtr3id | |- ( ( k e. _om /\ z e. A ) -> ( G ` <. k , z >. ) = ( { suc k } X. ( k F z ) ) ) |
| 169 | 151 156 168 | syl2anc | |- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( G ` <. k , z >. ) = ( { suc k } X. ( k F z ) ) ) |
| 170 | 150 169 | eqtrd | |- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( G ` ( h ` k ) ) = ( { suc k } X. ( k F z ) ) ) |
| 171 | 170 | eleq2d | |- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) <-> ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) ) ) |
| 172 | elxp | |- ( ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) <-> E. s E. t ( ( h ` suc k ) = <. s , t >. /\ ( s e. { suc k } /\ t e. ( k F z ) ) ) ) |
|
| 173 | peano2 | |- ( k e. _om -> suc k e. _om ) |
|
| 174 | fvco3 | |- ( ( h : _om --> ( _om X. A ) /\ suc k e. _om ) -> ( ( 2nd o. h ) ` suc k ) = ( 2nd ` ( h ` suc k ) ) ) |
|
| 175 | 173 174 | sylan2 | |- ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) = ( 2nd ` ( h ` suc k ) ) ) |
| 176 | 175 | adantl | |- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` suc k ) = ( 2nd ` ( h ` suc k ) ) ) |
| 177 | simpll | |- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( h ` suc k ) = <. s , t >. ) |
|
| 178 | 177 | fveq2d | |- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( 2nd ` ( h ` suc k ) ) = ( 2nd ` <. s , t >. ) ) |
| 179 | 176 178 | eqtrd | |- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` suc k ) = ( 2nd ` <. s , t >. ) ) |
| 180 | vex | |- s e. _V |
|
| 181 | vex | |- t e. _V |
|
| 182 | 180 181 | op2nd | |- ( 2nd ` <. s , t >. ) = t |
| 183 | 179 182 | eqtrdi | |- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` suc k ) = t ) |
| 184 | fvco3 | |- ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` k ) = ( 2nd ` ( h ` k ) ) ) |
|
| 185 | 184 | adantl | |- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` k ) = ( 2nd ` ( h ` k ) ) ) |
| 186 | simplr | |- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( h ` k ) = <. k , z >. ) |
|
| 187 | 186 | fveq2d | |- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( 2nd ` ( h ` k ) ) = ( 2nd ` <. k , z >. ) ) |
| 188 | 185 187 | eqtrd | |- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` k ) = ( 2nd ` <. k , z >. ) ) |
| 189 | vex | |- k e. _V |
|
| 190 | vex | |- z e. _V |
|
| 191 | 189 190 | op2nd | |- ( 2nd ` <. k , z >. ) = z |
| 192 | 188 191 | eqtrdi | |- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` k ) = z ) |
| 193 | 192 | oveq2d | |- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( k F ( ( 2nd o. h ) ` k ) ) = ( k F z ) ) |
| 194 | 183 193 | eleq12d | |- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) <-> t e. ( k F z ) ) ) |
| 195 | 194 | biimprcd | |- ( t e. ( k F z ) -> ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
| 196 | 195 | exp4c | |- ( t e. ( k F z ) -> ( ( h ` suc k ) = <. s , t >. -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) ) |
| 197 | 196 | adantl | |- ( ( s e. { suc k } /\ t e. ( k F z ) ) -> ( ( h ` suc k ) = <. s , t >. -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) ) |
| 198 | 197 | impcom | |- ( ( ( h ` suc k ) = <. s , t >. /\ ( s e. { suc k } /\ t e. ( k F z ) ) ) -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
| 199 | 198 | exlimivv | |- ( E. s E. t ( ( h ` suc k ) = <. s , t >. /\ ( s e. { suc k } /\ t e. ( k F z ) ) ) -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
| 200 | 172 199 | sylbi | |- ( ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
| 201 | 200 | com3l | |- ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
| 202 | 201 | imp | |- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
| 203 | 171 202 | sylbid | |- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
| 204 | 203 | ex | |- ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
| 205 | 204 | exlimiv | |- ( E. z ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
| 206 | 205 | 3imp | |- ( ( E. z ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) /\ ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) |
| 207 | 143 144 145 148 206 | syl121anc | |- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) |
| 208 | 207 | 3expia | |- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( k e. _om -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
| 209 | 64 208 | ralrimi | |- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> A. k e. _om ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) |
| 210 | 46 58 209 | 3jca | |- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( ( 2nd o. h ) : _om --> A /\ ( ( 2nd o. h ) ` (/) ) = C /\ A. k e. _om ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
| 211 | feq1 | |- ( g = ( 2nd o. h ) -> ( g : _om --> A <-> ( 2nd o. h ) : _om --> A ) ) |
|
| 212 | fveq1 | |- ( g = ( 2nd o. h ) -> ( g ` (/) ) = ( ( 2nd o. h ) ` (/) ) ) |
|
| 213 | 212 | eqeq1d | |- ( g = ( 2nd o. h ) -> ( ( g ` (/) ) = C <-> ( ( 2nd o. h ) ` (/) ) = C ) ) |
| 214 | fveq1 | |- ( g = ( 2nd o. h ) -> ( g ` suc k ) = ( ( 2nd o. h ) ` suc k ) ) |
|
| 215 | fveq1 | |- ( g = ( 2nd o. h ) -> ( g ` k ) = ( ( 2nd o. h ) ` k ) ) |
|
| 216 | 215 | oveq2d | |- ( g = ( 2nd o. h ) -> ( k F ( g ` k ) ) = ( k F ( ( 2nd o. h ) ` k ) ) ) |
| 217 | 214 216 | eleq12d | |- ( g = ( 2nd o. h ) -> ( ( g ` suc k ) e. ( k F ( g ` k ) ) <-> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
| 218 | 217 | ralbidv | |- ( g = ( 2nd o. h ) -> ( A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) <-> A. k e. _om ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
| 219 | 211 213 218 | 3anbi123d | |- ( g = ( 2nd o. h ) -> ( ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) <-> ( ( 2nd o. h ) : _om --> A /\ ( ( 2nd o. h ) ` (/) ) = C /\ A. k e. _om ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
| 220 | 49 210 219 | spcedv | |- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) |
| 221 | 220 | ex | |- ( C e. A -> ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) ) |
| 222 | 221 | exlimdv | |- ( C e. A -> ( E. h ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) ) |
| 223 | 222 | adantr | |- ( ( C e. A /\ F : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> ( E. h ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) ) |
| 224 | 43 223 | mpd | |- ( ( C e. A /\ F : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) |