This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cartesian product of nonempty classes is nonempty. (Variation of a theorem contributed by Raph Levien, 30-Jun-2006.) (Contributed by NM, 30-Jun-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpnz | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) | |
| 2 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐵 ) | |
| 3 | 1 2 | anbi12i | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ 𝐵 ) ) |
| 4 | exdistrv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ 𝐵 ) ) | |
| 5 | 3 4 | bitr4i | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 6 | opex | ⊢ 〈 𝑥 , 𝑦 〉 ∈ V | |
| 7 | eleq1 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝑧 ∈ ( 𝐴 × 𝐵 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) ) | |
| 8 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 9 | 7 8 | bitrdi | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝑧 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 10 | 6 9 | spcev | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑧 𝑧 ∈ ( 𝐴 × 𝐵 ) ) |
| 11 | n0 | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝐴 × 𝐵 ) ) | |
| 12 | 10 11 | sylibr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 13 | 12 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 14 | 5 13 | sylbi | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 15 | xpeq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 × 𝐵 ) = ( ∅ × 𝐵 ) ) | |
| 16 | 0xp | ⊢ ( ∅ × 𝐵 ) = ∅ | |
| 17 | 15 16 | eqtrdi | ⊢ ( 𝐴 = ∅ → ( 𝐴 × 𝐵 ) = ∅ ) |
| 18 | 17 | necon3i | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → 𝐴 ≠ ∅ ) |
| 19 | xpeq2 | ⊢ ( 𝐵 = ∅ → ( 𝐴 × 𝐵 ) = ( 𝐴 × ∅ ) ) | |
| 20 | xp0 | ⊢ ( 𝐴 × ∅ ) = ∅ | |
| 21 | 19 20 | eqtrdi | ⊢ ( 𝐵 = ∅ → ( 𝐴 × 𝐵 ) = ∅ ) |
| 22 | 21 | necon3i | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → 𝐵 ≠ ∅ ) |
| 23 | 18 22 | jca | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) |
| 24 | 14 23 | impbii | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( 𝐴 × 𝐵 ) ≠ ∅ ) |