This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of exponents law for integer exponentiation. Proposition 10-4.2(b) of Gleason p. 135. (Contributed by Mario Carneiro, 7-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expmulz | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0nn | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) | |
| 2 | elznn0nn | ⊢ ( 𝑀 ∈ ℤ ↔ ( 𝑀 ∈ ℕ0 ∨ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ) ) | |
| 3 | expmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) | |
| 4 | 3 | 3expia | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁 ∈ ℕ0 → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) |
| 5 | 4 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁 ∈ ℕ0 → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) |
| 6 | simp2l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) | |
| 7 | 6 | recnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℂ ) |
| 8 | simp3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 9 | 8 | nn0cnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 10 | 7 9 | mulneg1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( - 𝑀 · 𝑁 ) = - ( 𝑀 · 𝑁 ) ) |
| 11 | 10 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( - 𝑀 · 𝑁 ) ) = ( 𝐴 ↑ - ( 𝑀 · 𝑁 ) ) ) |
| 12 | simp1l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | |
| 13 | simp2r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - 𝑀 ∈ ℕ ) | |
| 14 | 13 | nnnn0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - 𝑀 ∈ ℕ0 ) |
| 15 | expmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( - 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ - 𝑀 ) ↑ 𝑁 ) ) | |
| 16 | 12 14 8 15 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( - 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ - 𝑀 ) ↑ 𝑁 ) ) |
| 17 | 11 16 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ - 𝑀 ) ↑ 𝑁 ) ) |
| 18 | 17 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 1 / ( 𝐴 ↑ - ( 𝑀 · 𝑁 ) ) ) = ( 1 / ( ( 𝐴 ↑ - 𝑀 ) ↑ 𝑁 ) ) ) |
| 19 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑀 ) ∈ ℂ ) | |
| 20 | 12 14 19 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑀 ) ∈ ℂ ) |
| 21 | simp1r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ≠ 0 ) | |
| 22 | 13 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - 𝑀 ∈ ℤ ) |
| 23 | expne0i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ - 𝑀 ∈ ℤ ) → ( 𝐴 ↑ - 𝑀 ) ≠ 0 ) | |
| 24 | 12 21 22 23 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑀 ) ≠ 0 ) |
| 25 | 8 | nn0zd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
| 26 | exprec | ⊢ ( ( ( 𝐴 ↑ - 𝑀 ) ∈ ℂ ∧ ( 𝐴 ↑ - 𝑀 ) ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ↑ 𝑁 ) = ( 1 / ( ( 𝐴 ↑ - 𝑀 ) ↑ 𝑁 ) ) ) | |
| 27 | 20 24 25 26 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ↑ 𝑁 ) = ( 1 / ( ( 𝐴 ↑ - 𝑀 ) ↑ 𝑁 ) ) ) |
| 28 | 18 27 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 1 / ( 𝐴 ↑ - ( 𝑀 · 𝑁 ) ) ) = ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ↑ 𝑁 ) ) |
| 29 | 7 9 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 · 𝑁 ) ∈ ℂ ) |
| 30 | 14 8 | nn0mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( - 𝑀 · 𝑁 ) ∈ ℕ0 ) |
| 31 | 10 30 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - ( 𝑀 · 𝑁 ) ∈ ℕ0 ) |
| 32 | expneg2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 · 𝑁 ) ∈ ℂ ∧ - ( 𝑀 · 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( 1 / ( 𝐴 ↑ - ( 𝑀 · 𝑁 ) ) ) ) | |
| 33 | 12 29 31 32 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( 1 / ( 𝐴 ↑ - ( 𝑀 · 𝑁 ) ) ) ) |
| 34 | expneg2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ - 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) = ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ) | |
| 35 | 12 7 14 34 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) = ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 36 | 35 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) = ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ↑ 𝑁 ) ) |
| 37 | 28 33 36 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) |
| 38 | 37 | 3expia | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ) → ( 𝑁 ∈ ℕ0 → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) |
| 39 | 5 38 | jaodan | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℕ0 ∨ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ) ) → ( 𝑁 ∈ ℕ0 → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) |
| 40 | simp2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑀 ∈ ℕ0 ) | |
| 41 | 40 | nn0cnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑀 ∈ ℂ ) |
| 42 | simp3l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℝ ) | |
| 43 | 42 | recnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℂ ) |
| 44 | 41 43 | mulneg2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝑀 · - 𝑁 ) = - ( 𝑀 · 𝑁 ) ) |
| 45 | 44 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ ( 𝑀 · - 𝑁 ) ) = ( 𝐴 ↑ - ( 𝑀 · 𝑁 ) ) ) |
| 46 | simp1l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐴 ∈ ℂ ) | |
| 47 | simp3r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℕ ) | |
| 48 | 47 | nnnn0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℕ0 ) |
| 49 | expmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · - 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ - 𝑁 ) ) | |
| 50 | 46 40 48 49 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ ( 𝑀 · - 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ - 𝑁 ) ) |
| 51 | 45 50 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ - ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ - 𝑁 ) ) |
| 52 | 51 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 1 / ( 𝐴 ↑ - ( 𝑀 · 𝑁 ) ) ) = ( 1 / ( ( 𝐴 ↑ 𝑀 ) ↑ - 𝑁 ) ) ) |
| 53 | 41 43 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝑀 · 𝑁 ) ∈ ℂ ) |
| 54 | 40 48 | nn0mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝑀 · - 𝑁 ) ∈ ℕ0 ) |
| 55 | 44 54 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - ( 𝑀 · 𝑁 ) ∈ ℕ0 ) |
| 56 | 46 53 55 32 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( 1 / ( 𝐴 ↑ - ( 𝑀 · 𝑁 ) ) ) ) |
| 57 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) | |
| 58 | 46 40 57 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
| 59 | expneg2 | ⊢ ( ( ( 𝐴 ↑ 𝑀 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) = ( 1 / ( ( 𝐴 ↑ 𝑀 ) ↑ - 𝑁 ) ) ) | |
| 60 | 58 43 48 59 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) = ( 1 / ( ( 𝐴 ↑ 𝑀 ) ↑ - 𝑁 ) ) ) |
| 61 | 52 56 60 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) |
| 62 | 61 | 3expia | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) |
| 63 | simp1l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐴 ∈ ℂ ) | |
| 64 | simp2l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑀 ∈ ℝ ) | |
| 65 | 64 | recnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑀 ∈ ℂ ) |
| 66 | simp2r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑀 ∈ ℕ ) | |
| 67 | 66 | nnnn0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑀 ∈ ℕ0 ) |
| 68 | 63 65 67 34 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ 𝑀 ) = ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 69 | 68 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) = ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ↑ 𝑁 ) ) |
| 70 | 63 67 19 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ - 𝑀 ) ∈ ℂ ) |
| 71 | simp1r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐴 ≠ 0 ) | |
| 72 | 66 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑀 ∈ ℤ ) |
| 73 | 63 71 72 23 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ - 𝑀 ) ≠ 0 ) |
| 74 | 70 73 | reccld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ∈ ℂ ) |
| 75 | simp3l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℝ ) | |
| 76 | 75 | recnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℂ ) |
| 77 | simp3r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℕ ) | |
| 78 | 77 | nnnn0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℕ0 ) |
| 79 | expneg2 | ⊢ ( ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ↑ 𝑁 ) = ( 1 / ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ↑ - 𝑁 ) ) ) | |
| 80 | 74 76 78 79 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ↑ 𝑁 ) = ( 1 / ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ↑ - 𝑁 ) ) ) |
| 81 | 77 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℤ ) |
| 82 | exprec | ⊢ ( ( ( 𝐴 ↑ - 𝑀 ) ∈ ℂ ∧ ( 𝐴 ↑ - 𝑀 ) ≠ 0 ∧ - 𝑁 ∈ ℤ ) → ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ↑ - 𝑁 ) = ( 1 / ( ( 𝐴 ↑ - 𝑀 ) ↑ - 𝑁 ) ) ) | |
| 83 | 70 73 81 82 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ↑ - 𝑁 ) = ( 1 / ( ( 𝐴 ↑ - 𝑀 ) ↑ - 𝑁 ) ) ) |
| 84 | 83 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 1 / ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ↑ - 𝑁 ) ) = ( 1 / ( 1 / ( ( 𝐴 ↑ - 𝑀 ) ↑ - 𝑁 ) ) ) ) |
| 85 | expcl | ⊢ ( ( ( 𝐴 ↑ - 𝑀 ) ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( ( 𝐴 ↑ - 𝑀 ) ↑ - 𝑁 ) ∈ ℂ ) | |
| 86 | 70 78 85 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( ( 𝐴 ↑ - 𝑀 ) ↑ - 𝑁 ) ∈ ℂ ) |
| 87 | expne0i | ⊢ ( ( ( 𝐴 ↑ - 𝑀 ) ∈ ℂ ∧ ( 𝐴 ↑ - 𝑀 ) ≠ 0 ∧ - 𝑁 ∈ ℤ ) → ( ( 𝐴 ↑ - 𝑀 ) ↑ - 𝑁 ) ≠ 0 ) | |
| 88 | 70 73 81 87 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( ( 𝐴 ↑ - 𝑀 ) ↑ - 𝑁 ) ≠ 0 ) |
| 89 | 86 88 | recrecd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 1 / ( 1 / ( ( 𝐴 ↑ - 𝑀 ) ↑ - 𝑁 ) ) ) = ( ( 𝐴 ↑ - 𝑀 ) ↑ - 𝑁 ) ) |
| 90 | expmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝑀 ∈ ℕ0 ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( - 𝑀 · - 𝑁 ) ) = ( ( 𝐴 ↑ - 𝑀 ) ↑ - 𝑁 ) ) | |
| 91 | 63 67 78 90 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ ( - 𝑀 · - 𝑁 ) ) = ( ( 𝐴 ↑ - 𝑀 ) ↑ - 𝑁 ) ) |
| 92 | 65 76 | mul2negd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - 𝑀 · - 𝑁 ) = ( 𝑀 · 𝑁 ) ) |
| 93 | 92 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ ( - 𝑀 · - 𝑁 ) ) = ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) ) |
| 94 | 91 93 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( ( 𝐴 ↑ - 𝑀 ) ↑ - 𝑁 ) = ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) ) |
| 95 | 84 89 94 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 1 / ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ↑ - 𝑁 ) ) = ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) ) |
| 96 | 69 80 95 | 3eqtrrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) |
| 97 | 96 | 3expia | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ) → ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) |
| 98 | 62 97 | jaodan | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℕ0 ∨ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ) ) → ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) |
| 99 | 39 98 | jaod | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℕ0 ∨ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ) ) → ( ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) |
| 100 | 2 99 | sylan2b | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) |
| 101 | 1 100 | biimtrid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℤ ) → ( 𝑁 ∈ ℤ → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) |
| 102 | 101 | impr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) |