This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two complex numbers are equal, their difference is zero. Consequence of subeq0ad . Converse of subeq0d . Contrapositive of subne0ad . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subeq0bd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| subeq0bd.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| Assertion | subeq0bd | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subeq0bd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | subeq0bd.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 3 | 2 1 | eqeltrrd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 4 | 1 3 | subeq0ad | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) |
| 5 | 2 4 | mpbird | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = 0 ) |