This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for atanlogsub . (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanlogsublem | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) − ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) ∈ ( - π (,) π ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | ax-icn | ⊢ i ∈ ℂ | |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 𝐴 ∈ dom arctan ) | |
| 4 | atandm2 | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) | |
| 5 | 3 4 | sylib | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) |
| 6 | 5 | simp1d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
| 7 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 8 | 2 6 7 | sylancr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( i · 𝐴 ) ∈ ℂ ) |
| 9 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) | |
| 10 | 1 8 9 | sylancr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 11 | 5 | simp3d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 1 + ( i · 𝐴 ) ) ≠ 0 ) |
| 12 | 10 11 | logcld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 13 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) | |
| 14 | 1 8 13 | sylancr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) |
| 15 | 5 | simp2d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 1 − ( i · 𝐴 ) ) ≠ 0 ) |
| 16 | 14 15 | logcld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 17 | 12 16 | imsubd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) − ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) = ( ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) − ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) ) |
| 18 | 2 | a1i | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → i ∈ ℂ ) |
| 19 | 18 6 18 | subdid | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( i · ( 𝐴 − i ) ) = ( ( i · 𝐴 ) − ( i · i ) ) ) |
| 20 | ixi | ⊢ ( i · i ) = - 1 | |
| 21 | 20 | oveq2i | ⊢ ( ( i · 𝐴 ) − ( i · i ) ) = ( ( i · 𝐴 ) − - 1 ) |
| 22 | subneg | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( i · 𝐴 ) − - 1 ) = ( ( i · 𝐴 ) + 1 ) ) | |
| 23 | 8 1 22 | sylancl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( i · 𝐴 ) − - 1 ) = ( ( i · 𝐴 ) + 1 ) ) |
| 24 | 21 23 | eqtrid | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( i · 𝐴 ) − ( i · i ) ) = ( ( i · 𝐴 ) + 1 ) ) |
| 25 | addcom | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( i · 𝐴 ) + 1 ) = ( 1 + ( i · 𝐴 ) ) ) | |
| 26 | 8 1 25 | sylancl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( i · 𝐴 ) + 1 ) = ( 1 + ( i · 𝐴 ) ) ) |
| 27 | 19 24 26 | 3eqtrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( i · ( 𝐴 − i ) ) = ( 1 + ( i · 𝐴 ) ) ) |
| 28 | 27 | fveq2d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( i · ( 𝐴 − i ) ) ) = ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) |
| 29 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ) → ( 𝐴 − i ) ∈ ℂ ) | |
| 30 | 6 2 29 | sylancl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 𝐴 − i ) ∈ ℂ ) |
| 31 | resub | ⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ) → ( ℜ ‘ ( 𝐴 − i ) ) = ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ i ) ) ) | |
| 32 | 6 2 31 | sylancl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( 𝐴 − i ) ) = ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ i ) ) ) |
| 33 | rei | ⊢ ( ℜ ‘ i ) = 0 | |
| 34 | 33 | oveq2i | ⊢ ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ i ) ) = ( ( ℜ ‘ 𝐴 ) − 0 ) |
| 35 | 6 | recld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 36 | 35 | recnd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 37 | 36 | subid1d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℜ ‘ 𝐴 ) − 0 ) = ( ℜ ‘ 𝐴 ) ) |
| 38 | 34 37 | eqtrid | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ i ) ) = ( ℜ ‘ 𝐴 ) ) |
| 39 | 32 38 | eqtrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( 𝐴 − i ) ) = ( ℜ ‘ 𝐴 ) ) |
| 40 | gt0ne0 | ⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) ≠ 0 ) | |
| 41 | 35 40 | sylancom | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) ≠ 0 ) |
| 42 | 39 41 | eqnetrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( 𝐴 − i ) ) ≠ 0 ) |
| 43 | fveq2 | ⊢ ( ( 𝐴 − i ) = 0 → ( ℜ ‘ ( 𝐴 − i ) ) = ( ℜ ‘ 0 ) ) | |
| 44 | re0 | ⊢ ( ℜ ‘ 0 ) = 0 | |
| 45 | 43 44 | eqtrdi | ⊢ ( ( 𝐴 − i ) = 0 → ( ℜ ‘ ( 𝐴 − i ) ) = 0 ) |
| 46 | 45 | necon3i | ⊢ ( ( ℜ ‘ ( 𝐴 − i ) ) ≠ 0 → ( 𝐴 − i ) ≠ 0 ) |
| 47 | 42 46 | syl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 𝐴 − i ) ≠ 0 ) |
| 48 | simpr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℜ ‘ 𝐴 ) ) | |
| 49 | 0re | ⊢ 0 ∈ ℝ | |
| 50 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ) → ( 0 < ( ℜ ‘ 𝐴 ) → 0 ≤ ( ℜ ‘ 𝐴 ) ) ) | |
| 51 | 49 35 50 | sylancr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 0 < ( ℜ ‘ 𝐴 ) → 0 ≤ ( ℜ ‘ 𝐴 ) ) ) |
| 52 | 48 51 | mpd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( ℜ ‘ 𝐴 ) ) |
| 53 | 52 39 | breqtrrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( ℜ ‘ ( 𝐴 − i ) ) ) |
| 54 | logimul | ⊢ ( ( ( 𝐴 − i ) ∈ ℂ ∧ ( 𝐴 − i ) ≠ 0 ∧ 0 ≤ ( ℜ ‘ ( 𝐴 − i ) ) ) → ( log ‘ ( i · ( 𝐴 − i ) ) ) = ( ( log ‘ ( 𝐴 − i ) ) + ( i · ( π / 2 ) ) ) ) | |
| 55 | 30 47 53 54 | syl3anc | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( i · ( 𝐴 − i ) ) ) = ( ( log ‘ ( 𝐴 − i ) ) + ( i · ( π / 2 ) ) ) ) |
| 56 | 28 55 | eqtr3d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( 1 + ( i · 𝐴 ) ) ) = ( ( log ‘ ( 𝐴 − i ) ) + ( i · ( π / 2 ) ) ) ) |
| 57 | 56 | fveq2d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) = ( ℑ ‘ ( ( log ‘ ( 𝐴 − i ) ) + ( i · ( π / 2 ) ) ) ) ) |
| 58 | 30 47 | logcld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( 𝐴 − i ) ) ∈ ℂ ) |
| 59 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 60 | 59 | recni | ⊢ ( π / 2 ) ∈ ℂ |
| 61 | 2 60 | mulcli | ⊢ ( i · ( π / 2 ) ) ∈ ℂ |
| 62 | imadd | ⊢ ( ( ( log ‘ ( 𝐴 − i ) ) ∈ ℂ ∧ ( i · ( π / 2 ) ) ∈ ℂ ) → ( ℑ ‘ ( ( log ‘ ( 𝐴 − i ) ) + ( i · ( π / 2 ) ) ) ) = ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) + ( ℑ ‘ ( i · ( π / 2 ) ) ) ) ) | |
| 63 | 58 61 62 | sylancl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ ( 𝐴 − i ) ) + ( i · ( π / 2 ) ) ) ) = ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) + ( ℑ ‘ ( i · ( π / 2 ) ) ) ) ) |
| 64 | reim | ⊢ ( ( π / 2 ) ∈ ℂ → ( ℜ ‘ ( π / 2 ) ) = ( ℑ ‘ ( i · ( π / 2 ) ) ) ) | |
| 65 | 60 64 | ax-mp | ⊢ ( ℜ ‘ ( π / 2 ) ) = ( ℑ ‘ ( i · ( π / 2 ) ) ) |
| 66 | rere | ⊢ ( ( π / 2 ) ∈ ℝ → ( ℜ ‘ ( π / 2 ) ) = ( π / 2 ) ) | |
| 67 | 59 66 | ax-mp | ⊢ ( ℜ ‘ ( π / 2 ) ) = ( π / 2 ) |
| 68 | 65 67 | eqtr3i | ⊢ ( ℑ ‘ ( i · ( π / 2 ) ) ) = ( π / 2 ) |
| 69 | 68 | oveq2i | ⊢ ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) + ( ℑ ‘ ( i · ( π / 2 ) ) ) ) = ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) + ( π / 2 ) ) |
| 70 | 63 69 | eqtrdi | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ ( 𝐴 − i ) ) + ( i · ( π / 2 ) ) ) ) = ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) + ( π / 2 ) ) ) |
| 71 | 57 70 | eqtrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) = ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) + ( π / 2 ) ) ) |
| 72 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ) → ( 𝐴 + i ) ∈ ℂ ) | |
| 73 | 6 2 72 | sylancl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 𝐴 + i ) ∈ ℂ ) |
| 74 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( 𝐴 + i ) ∈ ℂ ) → ( i · ( 𝐴 + i ) ) ∈ ℂ ) | |
| 75 | 2 73 74 | sylancr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( i · ( 𝐴 + i ) ) ∈ ℂ ) |
| 76 | reim | ⊢ ( ( 𝐴 + i ) ∈ ℂ → ( ℜ ‘ ( 𝐴 + i ) ) = ( ℑ ‘ ( i · ( 𝐴 + i ) ) ) ) | |
| 77 | 73 76 | syl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( 𝐴 + i ) ) = ( ℑ ‘ ( i · ( 𝐴 + i ) ) ) ) |
| 78 | readd | ⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ) → ( ℜ ‘ ( 𝐴 + i ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ i ) ) ) | |
| 79 | 6 2 78 | sylancl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( 𝐴 + i ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ i ) ) ) |
| 80 | 33 | oveq2i | ⊢ ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ i ) ) = ( ( ℜ ‘ 𝐴 ) + 0 ) |
| 81 | 36 | addridd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℜ ‘ 𝐴 ) + 0 ) = ( ℜ ‘ 𝐴 ) ) |
| 82 | 80 81 | eqtrid | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ i ) ) = ( ℜ ‘ 𝐴 ) ) |
| 83 | 79 82 | eqtrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( 𝐴 + i ) ) = ( ℜ ‘ 𝐴 ) ) |
| 84 | 77 83 | eqtr3d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( i · ( 𝐴 + i ) ) ) = ( ℜ ‘ 𝐴 ) ) |
| 85 | 48 84 | breqtrrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( i · ( 𝐴 + i ) ) ) ) |
| 86 | logneg2 | ⊢ ( ( ( i · ( 𝐴 + i ) ) ∈ ℂ ∧ 0 < ( ℑ ‘ ( i · ( 𝐴 + i ) ) ) ) → ( log ‘ - ( i · ( 𝐴 + i ) ) ) = ( ( log ‘ ( i · ( 𝐴 + i ) ) ) − ( i · π ) ) ) | |
| 87 | 75 85 86 | syl2anc | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( log ‘ - ( i · ( 𝐴 + i ) ) ) = ( ( log ‘ ( i · ( 𝐴 + i ) ) ) − ( i · π ) ) ) |
| 88 | 18 6 18 | adddid | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( i · ( 𝐴 + i ) ) = ( ( i · 𝐴 ) + ( i · i ) ) ) |
| 89 | 20 | oveq2i | ⊢ ( ( i · 𝐴 ) + ( i · i ) ) = ( ( i · 𝐴 ) + - 1 ) |
| 90 | negsub | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( i · 𝐴 ) + - 1 ) = ( ( i · 𝐴 ) − 1 ) ) | |
| 91 | 8 1 90 | sylancl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( i · 𝐴 ) + - 1 ) = ( ( i · 𝐴 ) − 1 ) ) |
| 92 | 89 91 | eqtrid | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( i · 𝐴 ) + ( i · i ) ) = ( ( i · 𝐴 ) − 1 ) ) |
| 93 | 88 92 | eqtrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( i · ( 𝐴 + i ) ) = ( ( i · 𝐴 ) − 1 ) ) |
| 94 | 93 | negeqd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - ( i · ( 𝐴 + i ) ) = - ( ( i · 𝐴 ) − 1 ) ) |
| 95 | negsubdi2 | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → - ( ( i · 𝐴 ) − 1 ) = ( 1 − ( i · 𝐴 ) ) ) | |
| 96 | 8 1 95 | sylancl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - ( ( i · 𝐴 ) − 1 ) = ( 1 − ( i · 𝐴 ) ) ) |
| 97 | 94 96 | eqtrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - ( i · ( 𝐴 + i ) ) = ( 1 − ( i · 𝐴 ) ) ) |
| 98 | 97 | fveq2d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( log ‘ - ( i · ( 𝐴 + i ) ) ) = ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) |
| 99 | 83 41 | eqnetrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( 𝐴 + i ) ) ≠ 0 ) |
| 100 | fveq2 | ⊢ ( ( 𝐴 + i ) = 0 → ( ℜ ‘ ( 𝐴 + i ) ) = ( ℜ ‘ 0 ) ) | |
| 101 | 100 44 | eqtrdi | ⊢ ( ( 𝐴 + i ) = 0 → ( ℜ ‘ ( 𝐴 + i ) ) = 0 ) |
| 102 | 101 | necon3i | ⊢ ( ( ℜ ‘ ( 𝐴 + i ) ) ≠ 0 → ( 𝐴 + i ) ≠ 0 ) |
| 103 | 99 102 | syl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 𝐴 + i ) ≠ 0 ) |
| 104 | 73 103 | logcld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( 𝐴 + i ) ) ∈ ℂ ) |
| 105 | 61 | a1i | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( i · ( π / 2 ) ) ∈ ℂ ) |
| 106 | picn | ⊢ π ∈ ℂ | |
| 107 | 2 106 | mulcli | ⊢ ( i · π ) ∈ ℂ |
| 108 | 107 | a1i | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( i · π ) ∈ ℂ ) |
| 109 | 52 83 | breqtrrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( ℜ ‘ ( 𝐴 + i ) ) ) |
| 110 | logimul | ⊢ ( ( ( 𝐴 + i ) ∈ ℂ ∧ ( 𝐴 + i ) ≠ 0 ∧ 0 ≤ ( ℜ ‘ ( 𝐴 + i ) ) ) → ( log ‘ ( i · ( 𝐴 + i ) ) ) = ( ( log ‘ ( 𝐴 + i ) ) + ( i · ( π / 2 ) ) ) ) | |
| 111 | 73 103 109 110 | syl3anc | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( i · ( 𝐴 + i ) ) ) = ( ( log ‘ ( 𝐴 + i ) ) + ( i · ( π / 2 ) ) ) ) |
| 112 | 111 | oveq1d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( log ‘ ( i · ( 𝐴 + i ) ) ) − ( i · π ) ) = ( ( ( log ‘ ( 𝐴 + i ) ) + ( i · ( π / 2 ) ) ) − ( i · π ) ) ) |
| 113 | 104 105 108 112 | assraddsubd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( log ‘ ( i · ( 𝐴 + i ) ) ) − ( i · π ) ) = ( ( log ‘ ( 𝐴 + i ) ) + ( ( i · ( π / 2 ) ) − ( i · π ) ) ) ) |
| 114 | 87 98 113 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( 1 − ( i · 𝐴 ) ) ) = ( ( log ‘ ( 𝐴 + i ) ) + ( ( i · ( π / 2 ) ) − ( i · π ) ) ) ) |
| 115 | 114 | fveq2d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ℑ ‘ ( ( log ‘ ( 𝐴 + i ) ) + ( ( i · ( π / 2 ) ) − ( i · π ) ) ) ) ) |
| 116 | 61 107 | subcli | ⊢ ( ( i · ( π / 2 ) ) − ( i · π ) ) ∈ ℂ |
| 117 | imadd | ⊢ ( ( ( log ‘ ( 𝐴 + i ) ) ∈ ℂ ∧ ( ( i · ( π / 2 ) ) − ( i · π ) ) ∈ ℂ ) → ( ℑ ‘ ( ( log ‘ ( 𝐴 + i ) ) + ( ( i · ( π / 2 ) ) − ( i · π ) ) ) ) = ( ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) + ( ℑ ‘ ( ( i · ( π / 2 ) ) − ( i · π ) ) ) ) ) | |
| 118 | 104 116 117 | sylancl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ ( 𝐴 + i ) ) + ( ( i · ( π / 2 ) ) − ( i · π ) ) ) ) = ( ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) + ( ℑ ‘ ( ( i · ( π / 2 ) ) − ( i · π ) ) ) ) ) |
| 119 | imsub | ⊢ ( ( ( i · ( π / 2 ) ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ) → ( ℑ ‘ ( ( i · ( π / 2 ) ) − ( i · π ) ) ) = ( ( ℑ ‘ ( i · ( π / 2 ) ) ) − ( ℑ ‘ ( i · π ) ) ) ) | |
| 120 | 61 107 119 | mp2an | ⊢ ( ℑ ‘ ( ( i · ( π / 2 ) ) − ( i · π ) ) ) = ( ( ℑ ‘ ( i · ( π / 2 ) ) ) − ( ℑ ‘ ( i · π ) ) ) |
| 121 | reim | ⊢ ( π ∈ ℂ → ( ℜ ‘ π ) = ( ℑ ‘ ( i · π ) ) ) | |
| 122 | 106 121 | ax-mp | ⊢ ( ℜ ‘ π ) = ( ℑ ‘ ( i · π ) ) |
| 123 | pire | ⊢ π ∈ ℝ | |
| 124 | rere | ⊢ ( π ∈ ℝ → ( ℜ ‘ π ) = π ) | |
| 125 | 123 124 | ax-mp | ⊢ ( ℜ ‘ π ) = π |
| 126 | 122 125 | eqtr3i | ⊢ ( ℑ ‘ ( i · π ) ) = π |
| 127 | 68 126 | oveq12i | ⊢ ( ( ℑ ‘ ( i · ( π / 2 ) ) ) − ( ℑ ‘ ( i · π ) ) ) = ( ( π / 2 ) − π ) |
| 128 | 60 | negcli | ⊢ - ( π / 2 ) ∈ ℂ |
| 129 | 106 60 | negsubi | ⊢ ( π + - ( π / 2 ) ) = ( π − ( π / 2 ) ) |
| 130 | pidiv2halves | ⊢ ( ( π / 2 ) + ( π / 2 ) ) = π | |
| 131 | 106 60 60 130 | subaddrii | ⊢ ( π − ( π / 2 ) ) = ( π / 2 ) |
| 132 | 129 131 | eqtri | ⊢ ( π + - ( π / 2 ) ) = ( π / 2 ) |
| 133 | 60 106 128 132 | subaddrii | ⊢ ( ( π / 2 ) − π ) = - ( π / 2 ) |
| 134 | 120 127 133 | 3eqtri | ⊢ ( ℑ ‘ ( ( i · ( π / 2 ) ) − ( i · π ) ) ) = - ( π / 2 ) |
| 135 | 134 | oveq2i | ⊢ ( ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) + ( ℑ ‘ ( ( i · ( π / 2 ) ) − ( i · π ) ) ) ) = ( ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) + - ( π / 2 ) ) |
| 136 | 118 135 | eqtrdi | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ ( 𝐴 + i ) ) + ( ( i · ( π / 2 ) ) − ( i · π ) ) ) ) = ( ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) + - ( π / 2 ) ) ) |
| 137 | 115 136 | eqtrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) + - ( π / 2 ) ) ) |
| 138 | 71 137 | oveq12d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) − ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) = ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) + ( π / 2 ) ) − ( ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) + - ( π / 2 ) ) ) ) |
| 139 | 58 | imcld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) ∈ ℝ ) |
| 140 | 139 | recnd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) ∈ ℂ ) |
| 141 | 60 | a1i | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( π / 2 ) ∈ ℂ ) |
| 142 | 104 | imcld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ∈ ℝ ) |
| 143 | 142 | recnd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ∈ ℂ ) |
| 144 | 128 | a1i | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - ( π / 2 ) ∈ ℂ ) |
| 145 | 140 141 143 144 | addsub4d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) + ( π / 2 ) ) − ( ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) + - ( π / 2 ) ) ) = ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + ( ( π / 2 ) − - ( π / 2 ) ) ) ) |
| 146 | 60 60 | subnegi | ⊢ ( ( π / 2 ) − - ( π / 2 ) ) = ( ( π / 2 ) + ( π / 2 ) ) |
| 147 | 146 130 | eqtri | ⊢ ( ( π / 2 ) − - ( π / 2 ) ) = π |
| 148 | 147 | oveq2i | ⊢ ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + ( ( π / 2 ) − - ( π / 2 ) ) ) = ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) |
| 149 | 145 148 | eqtrdi | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) + ( π / 2 ) ) − ( ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) + - ( π / 2 ) ) ) = ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) ) |
| 150 | 17 138 149 | 3eqtrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) − ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) = ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) ) |
| 151 | 139 142 | resubcld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) ∈ ℝ ) |
| 152 | readdcl | ⊢ ( ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) ∈ ℝ ) | |
| 153 | 151 123 152 | sylancl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) ∈ ℝ ) |
| 154 | 123 | renegcli | ⊢ - π ∈ ℝ |
| 155 | 154 | recni | ⊢ - π ∈ ℂ |
| 156 | 155 106 | negsubi | ⊢ ( - π + - π ) = ( - π − π ) |
| 157 | 154 | a1i | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - π ∈ ℝ ) |
| 158 | 142 | renegcld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ∈ ℝ ) |
| 159 | 30 47 | logimcld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) ∧ ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) ≤ π ) ) |
| 160 | 159 | simpld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - π < ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) ) |
| 161 | 73 103 | logimcld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ∧ ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ≤ π ) ) |
| 162 | 161 | simprd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ≤ π ) |
| 163 | leneg | ⊢ ( ( ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ≤ π ↔ - π ≤ - ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) ) | |
| 164 | 142 123 163 | sylancl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ≤ π ↔ - π ≤ - ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) ) |
| 165 | 162 164 | mpbid | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - π ≤ - ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) |
| 166 | 157 157 139 158 160 165 | ltleaddd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( - π + - π ) < ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) + - ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) ) |
| 167 | 140 143 | negsubd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) + - ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) = ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) ) |
| 168 | 166 167 | breqtrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( - π + - π ) < ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) ) |
| 169 | 156 168 | eqbrtrrid | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( - π − π ) < ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) ) |
| 170 | 123 | a1i | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → π ∈ ℝ ) |
| 171 | 157 170 151 | ltsubaddd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( - π − π ) < ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) ↔ - π < ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) ) ) |
| 172 | 169 171 | mpbid | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - π < ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) ) |
| 173 | 0red | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 ∈ ℝ ) | |
| 174 | 6 | imcld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 175 | peano2rem | ⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℝ → ( ( ℑ ‘ 𝐴 ) − 1 ) ∈ ℝ ) | |
| 176 | 174 175 | syl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ 𝐴 ) − 1 ) ∈ ℝ ) |
| 177 | peano2re | ⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℝ → ( ( ℑ ‘ 𝐴 ) + 1 ) ∈ ℝ ) | |
| 178 | 174 177 | syl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 179 | 174 | ltm1d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ 𝐴 ) − 1 ) < ( ℑ ‘ 𝐴 ) ) |
| 180 | 174 | ltp1d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) < ( ( ℑ ‘ 𝐴 ) + 1 ) ) |
| 181 | 176 174 178 179 180 | lttrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ 𝐴 ) − 1 ) < ( ( ℑ ‘ 𝐴 ) + 1 ) ) |
| 182 | ltdiv1 | ⊢ ( ( ( ( ℑ ‘ 𝐴 ) − 1 ) ∈ ℝ ∧ ( ( ℑ ‘ 𝐴 ) + 1 ) ∈ ℝ ∧ ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( ℜ ‘ 𝐴 ) ) ) → ( ( ( ℑ ‘ 𝐴 ) − 1 ) < ( ( ℑ ‘ 𝐴 ) + 1 ) ↔ ( ( ( ℑ ‘ 𝐴 ) − 1 ) / ( ℜ ‘ 𝐴 ) ) < ( ( ( ℑ ‘ 𝐴 ) + 1 ) / ( ℜ ‘ 𝐴 ) ) ) ) | |
| 183 | 176 178 35 48 182 | syl112anc | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ( ℑ ‘ 𝐴 ) − 1 ) < ( ( ℑ ‘ 𝐴 ) + 1 ) ↔ ( ( ( ℑ ‘ 𝐴 ) − 1 ) / ( ℜ ‘ 𝐴 ) ) < ( ( ( ℑ ‘ 𝐴 ) + 1 ) / ( ℜ ‘ 𝐴 ) ) ) ) |
| 184 | 181 183 | mpbid | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ( ℑ ‘ 𝐴 ) − 1 ) / ( ℜ ‘ 𝐴 ) ) < ( ( ( ℑ ‘ 𝐴 ) + 1 ) / ( ℜ ‘ 𝐴 ) ) ) |
| 185 | imsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ) → ( ℑ ‘ ( 𝐴 − i ) ) = ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ i ) ) ) | |
| 186 | 6 2 185 | sylancl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 − i ) ) = ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ i ) ) ) |
| 187 | imi | ⊢ ( ℑ ‘ i ) = 1 | |
| 188 | 187 | oveq2i | ⊢ ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ i ) ) = ( ( ℑ ‘ 𝐴 ) − 1 ) |
| 189 | 186 188 | eqtrdi | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 − i ) ) = ( ( ℑ ‘ 𝐴 ) − 1 ) ) |
| 190 | 189 39 | oveq12d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( 𝐴 − i ) ) / ( ℜ ‘ ( 𝐴 − i ) ) ) = ( ( ( ℑ ‘ 𝐴 ) − 1 ) / ( ℜ ‘ 𝐴 ) ) ) |
| 191 | imadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ) → ( ℑ ‘ ( 𝐴 + i ) ) = ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ i ) ) ) | |
| 192 | 6 2 191 | sylancl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 + i ) ) = ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ i ) ) ) |
| 193 | 187 | oveq2i | ⊢ ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ i ) ) = ( ( ℑ ‘ 𝐴 ) + 1 ) |
| 194 | 192 193 | eqtrdi | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 + i ) ) = ( ( ℑ ‘ 𝐴 ) + 1 ) ) |
| 195 | 194 83 | oveq12d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( 𝐴 + i ) ) / ( ℜ ‘ ( 𝐴 + i ) ) ) = ( ( ( ℑ ‘ 𝐴 ) + 1 ) / ( ℜ ‘ 𝐴 ) ) ) |
| 196 | 184 190 195 | 3brtr4d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( 𝐴 − i ) ) / ( ℜ ‘ ( 𝐴 − i ) ) ) < ( ( ℑ ‘ ( 𝐴 + i ) ) / ( ℜ ‘ ( 𝐴 + i ) ) ) ) |
| 197 | tanarg | ⊢ ( ( ( 𝐴 − i ) ∈ ℂ ∧ ( ℜ ‘ ( 𝐴 − i ) ) ≠ 0 ) → ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) ) = ( ( ℑ ‘ ( 𝐴 − i ) ) / ( ℜ ‘ ( 𝐴 − i ) ) ) ) | |
| 198 | 30 42 197 | syl2anc | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) ) = ( ( ℑ ‘ ( 𝐴 − i ) ) / ( ℜ ‘ ( 𝐴 − i ) ) ) ) |
| 199 | tanarg | ⊢ ( ( ( 𝐴 + i ) ∈ ℂ ∧ ( ℜ ‘ ( 𝐴 + i ) ) ≠ 0 ) → ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) = ( ( ℑ ‘ ( 𝐴 + i ) ) / ( ℜ ‘ ( 𝐴 + i ) ) ) ) | |
| 200 | 73 99 199 | syl2anc | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) = ( ( ℑ ‘ ( 𝐴 + i ) ) / ( ℜ ‘ ( 𝐴 + i ) ) ) ) |
| 201 | 196 198 200 | 3brtr4d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) ) < ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) ) |
| 202 | 48 39 | breqtrrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℜ ‘ ( 𝐴 − i ) ) ) |
| 203 | argregt0 | ⊢ ( ( ( 𝐴 − i ) ∈ ℂ ∧ 0 < ( ℜ ‘ ( 𝐴 − i ) ) ) → ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) | |
| 204 | 30 202 203 | syl2anc | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 205 | 48 83 | breqtrrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℜ ‘ ( 𝐴 + i ) ) ) |
| 206 | argregt0 | ⊢ ( ( ( 𝐴 + i ) ∈ ℂ ∧ 0 < ( ℜ ‘ ( 𝐴 + i ) ) ) → ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) | |
| 207 | 73 205 206 | syl2anc | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 208 | tanord | ⊢ ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) < ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ↔ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) ) < ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) ) ) | |
| 209 | 204 207 208 | syl2anc | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) < ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ↔ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) ) < ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) ) ) |
| 210 | 201 209 | mpbird | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) < ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) |
| 211 | 143 | addlidd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 0 + ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) = ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) |
| 212 | 210 211 | breqtrrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) < ( 0 + ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) ) |
| 213 | 139 142 173 | ltsubaddd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) < 0 ↔ ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) < ( 0 + ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) ) ) |
| 214 | 212 213 | mpbird | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) < 0 ) |
| 215 | 151 173 170 214 | ltadd1dd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) < ( 0 + π ) ) |
| 216 | 106 | addlidi | ⊢ ( 0 + π ) = π |
| 217 | 215 216 | breqtrdi | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) < π ) |
| 218 | 154 | rexri | ⊢ - π ∈ ℝ* |
| 219 | 123 | rexri | ⊢ π ∈ ℝ* |
| 220 | elioo2 | ⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) ∈ ( - π (,) π ) ↔ ( ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) ∈ ℝ ∧ - π < ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) ∧ ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) < π ) ) ) | |
| 221 | 218 219 220 | mp2an | ⊢ ( ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) ∈ ( - π (,) π ) ↔ ( ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) ∈ ℝ ∧ - π < ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) ∧ ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) < π ) ) |
| 222 | 153 172 217 221 | syl3anbrc | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ( ℑ ‘ ( log ‘ ( 𝐴 − i ) ) ) − ( ℑ ‘ ( log ‘ ( 𝐴 + i ) ) ) ) + π ) ∈ ( - π (,) π ) ) |
| 223 | 150 222 | eqeltrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) − ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) ∈ ( - π (,) π ) ) |