This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The logarithm of the negative of a number with positive imaginary part is _i x. _pi less than the original. (Compare logneg .) (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logneg2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( log ‘ - 𝐴 ) = ( ( log ‘ 𝐴 ) − ( i · π ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | gt0ne0 | ⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
| 4 | fveq2 | ⊢ ( 𝐴 = 0 → ( ℑ ‘ 𝐴 ) = ( ℑ ‘ 0 ) ) | |
| 5 | im0 | ⊢ ( ℑ ‘ 0 ) = 0 | |
| 6 | 4 5 | eqtrdi | ⊢ ( 𝐴 = 0 → ( ℑ ‘ 𝐴 ) = 0 ) |
| 7 | 6 | necon3i | ⊢ ( ( ℑ ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ 0 ) |
| 8 | 3 7 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝐴 ≠ 0 ) |
| 9 | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 10 | 8 9 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 11 | ax-icn | ⊢ i ∈ ℂ | |
| 12 | picn | ⊢ π ∈ ℂ | |
| 13 | 11 12 | mulcli | ⊢ ( i · π ) ∈ ℂ |
| 14 | efsub | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( i · π ) ) ) ) | |
| 15 | 10 13 14 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( i · π ) ) ) ) |
| 16 | eflog | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) | |
| 17 | 8 16 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
| 18 | efipi | ⊢ ( exp ‘ ( i · π ) ) = - 1 | |
| 19 | 18 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( exp ‘ ( i · π ) ) = - 1 ) |
| 20 | 17 19 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( i · π ) ) ) = ( 𝐴 / - 1 ) ) |
| 21 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 22 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 23 | divneg2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) → - ( 𝐴 / 1 ) = ( 𝐴 / - 1 ) ) | |
| 24 | 21 22 23 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → - ( 𝐴 / 1 ) = ( 𝐴 / - 1 ) ) |
| 25 | div1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 1 ) = 𝐴 ) | |
| 26 | 25 | negeqd | ⊢ ( 𝐴 ∈ ℂ → - ( 𝐴 / 1 ) = - 𝐴 ) |
| 27 | 24 26 | eqtr3d | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / - 1 ) = - 𝐴 ) |
| 28 | 27 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 𝐴 / - 1 ) = - 𝐴 ) |
| 29 | 15 20 28 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = - 𝐴 ) |
| 30 | 29 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ) = ( log ‘ - 𝐴 ) ) |
| 31 | subcl | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ) → ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ℂ ) | |
| 32 | 10 13 31 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ℂ ) |
| 33 | argimgt0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) ) | |
| 34 | eliooord | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) |
| 36 | 35 | simpld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 37 | imcl | ⊢ ( ( log ‘ 𝐴 ) ∈ ℂ → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) | |
| 38 | 10 37 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 39 | pire | ⊢ π ∈ ℝ | |
| 40 | 39 | renegcli | ⊢ - π ∈ ℝ |
| 41 | ltaddpos2 | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ - π ∈ ℝ ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ - π < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + - π ) ) ) | |
| 42 | 38 40 41 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ - π < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + - π ) ) ) |
| 43 | 36 42 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + - π ) ) |
| 44 | 38 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 45 | negsub | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ∧ π ∈ ℂ ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + - π ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ) | |
| 46 | 44 12 45 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + - π ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ) |
| 47 | 43 46 | breqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ) |
| 48 | imsub | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − ( ℑ ‘ ( i · π ) ) ) ) | |
| 49 | 10 13 48 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − ( ℑ ‘ ( i · π ) ) ) ) |
| 50 | reim | ⊢ ( π ∈ ℂ → ( ℜ ‘ π ) = ( ℑ ‘ ( i · π ) ) ) | |
| 51 | 12 50 | ax-mp | ⊢ ( ℜ ‘ π ) = ( ℑ ‘ ( i · π ) ) |
| 52 | rere | ⊢ ( π ∈ ℝ → ( ℜ ‘ π ) = π ) | |
| 53 | 39 52 | ax-mp | ⊢ ( ℜ ‘ π ) = π |
| 54 | 51 53 | eqtr3i | ⊢ ( ℑ ‘ ( i · π ) ) = π |
| 55 | 54 | oveq2i | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − ( ℑ ‘ ( i · π ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) |
| 56 | 49 55 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ) |
| 57 | 47 56 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π < ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ) |
| 58 | resubcl | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ∈ ℝ ) | |
| 59 | 38 39 58 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ∈ ℝ ) |
| 60 | 39 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → π ∈ ℝ ) |
| 61 | 0re | ⊢ 0 ∈ ℝ | |
| 62 | pipos | ⊢ 0 < π | |
| 63 | 61 39 62 | ltleii | ⊢ 0 ≤ π |
| 64 | subge02 | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( 0 ≤ π ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 65 | 38 39 64 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 ≤ π ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 66 | 63 65 | mpbii | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 67 | logimcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) | |
| 68 | 8 67 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
| 69 | 68 | simprd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) |
| 70 | 59 38 60 66 69 | letrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ≤ π ) |
| 71 | 56 70 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ≤ π ) |
| 72 | ellogrn | ⊢ ( ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ran log ↔ ( ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ℂ ∧ - π < ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ∧ ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ≤ π ) ) | |
| 73 | 32 57 71 72 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ran log ) |
| 74 | logef | ⊢ ( ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ran log → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ) = ( ( log ‘ 𝐴 ) − ( i · π ) ) ) | |
| 75 | 73 74 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ) = ( ( log ‘ 𝐴 ) − ( i · π ) ) ) |
| 76 | 30 75 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( log ‘ - 𝐴 ) = ( ( log ‘ 𝐴 ) − ( i · π ) ) ) |