This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplying a number by _i increases the logarithm of the number by _i _pi / 2 . (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logimul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( i · 𝐴 ) ) = ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 3 | ax-icn | ⊢ i ∈ ℂ | |
| 4 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 5 | 4 | recni | ⊢ ( π / 2 ) ∈ ℂ |
| 6 | 3 5 | mulcli | ⊢ ( i · ( π / 2 ) ) ∈ ℂ |
| 7 | efadd | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( π / 2 ) ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) · ( exp ‘ ( i · ( π / 2 ) ) ) ) ) | |
| 8 | 2 6 7 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) · ( exp ‘ ( i · ( π / 2 ) ) ) ) ) |
| 9 | eflog | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) | |
| 10 | 9 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
| 11 | efhalfpi | ⊢ ( exp ‘ ( i · ( π / 2 ) ) ) = i | |
| 12 | 11 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( exp ‘ ( i · ( π / 2 ) ) ) = i ) |
| 13 | 10 12 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( exp ‘ ( log ‘ 𝐴 ) ) · ( exp ‘ ( i · ( π / 2 ) ) ) ) = ( 𝐴 · i ) ) |
| 14 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) | |
| 15 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ) → ( 𝐴 · i ) = ( i · 𝐴 ) ) | |
| 16 | 14 3 15 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( 𝐴 · i ) = ( i · 𝐴 ) ) |
| 17 | 8 13 16 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) = ( i · 𝐴 ) ) |
| 18 | 17 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) ) = ( log ‘ ( i · 𝐴 ) ) ) |
| 19 | addcl | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( π / 2 ) ) ∈ ℂ ) → ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ∈ ℂ ) | |
| 20 | 2 6 19 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ∈ ℂ ) |
| 21 | pire | ⊢ π ∈ ℝ | |
| 22 | 21 | renegcli | ⊢ - π ∈ ℝ |
| 23 | 22 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → - π ∈ ℝ ) |
| 24 | 2 | imcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 25 | readdcl | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ∈ ℝ ) | |
| 26 | 24 4 25 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ∈ ℝ ) |
| 27 | logimcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) | |
| 28 | 27 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
| 29 | 28 | simpld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 30 | pirp | ⊢ π ∈ ℝ+ | |
| 31 | rphalfcl | ⊢ ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ ) | |
| 32 | 30 31 | ax-mp | ⊢ ( π / 2 ) ∈ ℝ+ |
| 33 | ltaddrp | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ+ ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ) | |
| 34 | 24 32 33 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ) |
| 35 | 23 24 26 29 34 | lttrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → - π < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ) |
| 36 | imadd | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( π / 2 ) ) ∈ ℂ ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( ℑ ‘ ( i · ( π / 2 ) ) ) ) ) | |
| 37 | 2 6 36 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( ℑ ‘ ( i · ( π / 2 ) ) ) ) ) |
| 38 | reim | ⊢ ( ( π / 2 ) ∈ ℂ → ( ℜ ‘ ( π / 2 ) ) = ( ℑ ‘ ( i · ( π / 2 ) ) ) ) | |
| 39 | 5 38 | ax-mp | ⊢ ( ℜ ‘ ( π / 2 ) ) = ( ℑ ‘ ( i · ( π / 2 ) ) ) |
| 40 | rere | ⊢ ( ( π / 2 ) ∈ ℝ → ( ℜ ‘ ( π / 2 ) ) = ( π / 2 ) ) | |
| 41 | 4 40 | ax-mp | ⊢ ( ℜ ‘ ( π / 2 ) ) = ( π / 2 ) |
| 42 | 39 41 | eqtr3i | ⊢ ( ℑ ‘ ( i · ( π / 2 ) ) ) = ( π / 2 ) |
| 43 | 42 | oveq2i | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( ℑ ‘ ( i · ( π / 2 ) ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) |
| 44 | 37 43 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ) |
| 45 | 35 44 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → - π < ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) ) |
| 46 | argrege0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) | |
| 47 | 4 | renegcli | ⊢ - ( π / 2 ) ∈ ℝ |
| 48 | 47 4 | elicc2i | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ - ( π / 2 ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π / 2 ) ) ) |
| 49 | 48 | simp3bi | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π / 2 ) ) |
| 50 | 46 49 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π / 2 ) ) |
| 51 | 21 | recni | ⊢ π ∈ ℂ |
| 52 | pidiv2halves | ⊢ ( ( π / 2 ) + ( π / 2 ) ) = π | |
| 53 | 51 5 5 52 | subaddrii | ⊢ ( π − ( π / 2 ) ) = ( π / 2 ) |
| 54 | 50 53 | breqtrrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π − ( π / 2 ) ) ) |
| 55 | 4 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( π / 2 ) ∈ ℝ ) |
| 56 | 21 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → π ∈ ℝ ) |
| 57 | leaddsub | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ≤ π ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π − ( π / 2 ) ) ) ) | |
| 58 | 24 55 56 57 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ≤ π ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π − ( π / 2 ) ) ) ) |
| 59 | 54 58 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ≤ π ) |
| 60 | 44 59 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) ≤ π ) |
| 61 | ellogrn | ⊢ ( ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ∈ ran log ↔ ( ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ∈ ℂ ∧ - π < ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) ∧ ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) ≤ π ) ) | |
| 62 | 20 45 60 61 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ∈ ran log ) |
| 63 | logef | ⊢ ( ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ∈ ran log → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) ) = ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) | |
| 64 | 62 63 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) ) = ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) |
| 65 | 18 64 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( i · 𝐴 ) ) = ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) |