This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 19-Nov-2014) (Proof shortened by AV, 18-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackbij1lem5 | ⊢ ( 𝐴 ∈ ω → ( card ‘ 𝒫 suc 𝐴 ) = ( ( card ‘ 𝒫 𝐴 ) +o ( card ‘ 𝒫 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 | ⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) | |
| 2 | pw2eng | ⊢ ( suc 𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ ( 2o ↑m suc 𝐴 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ ( 2o ↑m suc 𝐴 ) ) |
| 4 | df-suc | ⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) | |
| 5 | 4 | oveq2i | ⊢ ( 2o ↑m suc 𝐴 ) = ( 2o ↑m ( 𝐴 ∪ { 𝐴 } ) ) |
| 6 | elex | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ V ) | |
| 7 | snex | ⊢ { 𝐴 } ∈ V | |
| 8 | 7 | a1i | ⊢ ( 𝐴 ∈ ω → { 𝐴 } ∈ V ) |
| 9 | 2onn | ⊢ 2o ∈ ω | |
| 10 | 9 | elexi | ⊢ 2o ∈ V |
| 11 | 10 | a1i | ⊢ ( 𝐴 ∈ ω → 2o ∈ V ) |
| 12 | nnord | ⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) | |
| 13 | orddisj | ⊢ ( Ord 𝐴 → ( 𝐴 ∩ { 𝐴 } ) = ∅ ) | |
| 14 | 12 13 | syl | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ∩ { 𝐴 } ) = ∅ ) |
| 15 | mapunen | ⊢ ( ( ( 𝐴 ∈ V ∧ { 𝐴 } ∈ V ∧ 2o ∈ V ) ∧ ( 𝐴 ∩ { 𝐴 } ) = ∅ ) → ( 2o ↑m ( 𝐴 ∪ { 𝐴 } ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m { 𝐴 } ) ) ) | |
| 16 | 6 8 11 14 15 | syl31anc | ⊢ ( 𝐴 ∈ ω → ( 2o ↑m ( 𝐴 ∪ { 𝐴 } ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m { 𝐴 } ) ) ) |
| 17 | ovex | ⊢ ( 2o ↑m 𝐴 ) ∈ V | |
| 18 | 17 | enref | ⊢ ( 2o ↑m 𝐴 ) ≈ ( 2o ↑m 𝐴 ) |
| 19 | 2on | ⊢ 2o ∈ On | |
| 20 | 19 | a1i | ⊢ ( 𝐴 ∈ ω → 2o ∈ On ) |
| 21 | id | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ ω ) | |
| 22 | 20 21 | mapsnend | ⊢ ( 𝐴 ∈ ω → ( 2o ↑m { 𝐴 } ) ≈ 2o ) |
| 23 | xpen | ⊢ ( ( ( 2o ↑m 𝐴 ) ≈ ( 2o ↑m 𝐴 ) ∧ ( 2o ↑m { 𝐴 } ) ≈ 2o ) → ( ( 2o ↑m 𝐴 ) × ( 2o ↑m { 𝐴 } ) ) ≈ ( ( 2o ↑m 𝐴 ) × 2o ) ) | |
| 24 | 18 22 23 | sylancr | ⊢ ( 𝐴 ∈ ω → ( ( 2o ↑m 𝐴 ) × ( 2o ↑m { 𝐴 } ) ) ≈ ( ( 2o ↑m 𝐴 ) × 2o ) ) |
| 25 | entr | ⊢ ( ( ( 2o ↑m ( 𝐴 ∪ { 𝐴 } ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m { 𝐴 } ) ) ∧ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m { 𝐴 } ) ) ≈ ( ( 2o ↑m 𝐴 ) × 2o ) ) → ( 2o ↑m ( 𝐴 ∪ { 𝐴 } ) ) ≈ ( ( 2o ↑m 𝐴 ) × 2o ) ) | |
| 26 | 16 24 25 | syl2anc | ⊢ ( 𝐴 ∈ ω → ( 2o ↑m ( 𝐴 ∪ { 𝐴 } ) ) ≈ ( ( 2o ↑m 𝐴 ) × 2o ) ) |
| 27 | 5 26 | eqbrtrid | ⊢ ( 𝐴 ∈ ω → ( 2o ↑m suc 𝐴 ) ≈ ( ( 2o ↑m 𝐴 ) × 2o ) ) |
| 28 | 17 10 | xpcomen | ⊢ ( ( 2o ↑m 𝐴 ) × 2o ) ≈ ( 2o × ( 2o ↑m 𝐴 ) ) |
| 29 | entr | ⊢ ( ( ( 2o ↑m suc 𝐴 ) ≈ ( ( 2o ↑m 𝐴 ) × 2o ) ∧ ( ( 2o ↑m 𝐴 ) × 2o ) ≈ ( 2o × ( 2o ↑m 𝐴 ) ) ) → ( 2o ↑m suc 𝐴 ) ≈ ( 2o × ( 2o ↑m 𝐴 ) ) ) | |
| 30 | 27 28 29 | sylancl | ⊢ ( 𝐴 ∈ ω → ( 2o ↑m suc 𝐴 ) ≈ ( 2o × ( 2o ↑m 𝐴 ) ) ) |
| 31 | 10 | enref | ⊢ 2o ≈ 2o |
| 32 | pw2eng | ⊢ ( 𝐴 ∈ ω → 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ) | |
| 33 | xpen | ⊢ ( ( 2o ≈ 2o ∧ 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ) → ( 2o × 𝒫 𝐴 ) ≈ ( 2o × ( 2o ↑m 𝐴 ) ) ) | |
| 34 | 31 32 33 | sylancr | ⊢ ( 𝐴 ∈ ω → ( 2o × 𝒫 𝐴 ) ≈ ( 2o × ( 2o ↑m 𝐴 ) ) ) |
| 35 | 34 | ensymd | ⊢ ( 𝐴 ∈ ω → ( 2o × ( 2o ↑m 𝐴 ) ) ≈ ( 2o × 𝒫 𝐴 ) ) |
| 36 | entr | ⊢ ( ( ( 2o ↑m suc 𝐴 ) ≈ ( 2o × ( 2o ↑m 𝐴 ) ) ∧ ( 2o × ( 2o ↑m 𝐴 ) ) ≈ ( 2o × 𝒫 𝐴 ) ) → ( 2o ↑m suc 𝐴 ) ≈ ( 2o × 𝒫 𝐴 ) ) | |
| 37 | 30 35 36 | syl2anc | ⊢ ( 𝐴 ∈ ω → ( 2o ↑m suc 𝐴 ) ≈ ( 2o × 𝒫 𝐴 ) ) |
| 38 | entr | ⊢ ( ( 𝒫 suc 𝐴 ≈ ( 2o ↑m suc 𝐴 ) ∧ ( 2o ↑m suc 𝐴 ) ≈ ( 2o × 𝒫 𝐴 ) ) → 𝒫 suc 𝐴 ≈ ( 2o × 𝒫 𝐴 ) ) | |
| 39 | 3 37 38 | syl2anc | ⊢ ( 𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ ( 2o × 𝒫 𝐴 ) ) |
| 40 | xp2dju | ⊢ ( 2o × 𝒫 𝐴 ) = ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) | |
| 41 | 39 40 | breqtrdi | ⊢ ( 𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
| 42 | nnfi | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) | |
| 43 | pwfi | ⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) | |
| 44 | 42 43 | sylib | ⊢ ( 𝐴 ∈ ω → 𝒫 𝐴 ∈ Fin ) |
| 45 | ficardid | ⊢ ( 𝒫 𝐴 ∈ Fin → ( card ‘ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) | |
| 46 | 44 45 | syl | ⊢ ( 𝐴 ∈ ω → ( card ‘ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |
| 47 | djuen | ⊢ ( ( ( card ‘ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ∧ ( card ‘ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) → ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ≈ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) | |
| 48 | 46 46 47 | syl2anc | ⊢ ( 𝐴 ∈ ω → ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ≈ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
| 49 | 48 | ensymd | ⊢ ( 𝐴 ∈ ω → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ) |
| 50 | entr | ⊢ ( ( 𝒫 suc 𝐴 ≈ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ∧ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ) → 𝒫 suc 𝐴 ≈ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ) | |
| 51 | 41 49 50 | syl2anc | ⊢ ( 𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ) |
| 52 | carden2b | ⊢ ( 𝒫 suc 𝐴 ≈ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) → ( card ‘ 𝒫 suc 𝐴 ) = ( card ‘ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ) ) | |
| 53 | 51 52 | syl | ⊢ ( 𝐴 ∈ ω → ( card ‘ 𝒫 suc 𝐴 ) = ( card ‘ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ) ) |
| 54 | ficardom | ⊢ ( 𝒫 𝐴 ∈ Fin → ( card ‘ 𝒫 𝐴 ) ∈ ω ) | |
| 55 | 44 54 | syl | ⊢ ( 𝐴 ∈ ω → ( card ‘ 𝒫 𝐴 ) ∈ ω ) |
| 56 | nnadju | ⊢ ( ( ( card ‘ 𝒫 𝐴 ) ∈ ω ∧ ( card ‘ 𝒫 𝐴 ) ∈ ω ) → ( card ‘ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ) = ( ( card ‘ 𝒫 𝐴 ) +o ( card ‘ 𝒫 𝐴 ) ) ) | |
| 57 | 55 55 56 | syl2anc | ⊢ ( 𝐴 ∈ ω → ( card ‘ ( ( card ‘ 𝒫 𝐴 ) ⊔ ( card ‘ 𝒫 𝐴 ) ) ) = ( ( card ‘ 𝒫 𝐴 ) +o ( card ‘ 𝒫 𝐴 ) ) ) |
| 58 | 53 57 | eqtrd | ⊢ ( 𝐴 ∈ ω → ( card ‘ 𝒫 suc 𝐴 ) = ( ( card ‘ 𝒫 𝐴 ) +o ( card ‘ 𝒫 𝐴 ) ) ) |