This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 19-Nov-2014) (Proof shortened by AV, 18-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackbij1lem5 | |- ( A e. _om -> ( card ` ~P suc A ) = ( ( card ` ~P A ) +o ( card ` ~P A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 | |- ( A e. _om -> suc A e. _om ) |
|
| 2 | pw2eng | |- ( suc A e. _om -> ~P suc A ~~ ( 2o ^m suc A ) ) |
|
| 3 | 1 2 | syl | |- ( A e. _om -> ~P suc A ~~ ( 2o ^m suc A ) ) |
| 4 | df-suc | |- suc A = ( A u. { A } ) |
|
| 5 | 4 | oveq2i | |- ( 2o ^m suc A ) = ( 2o ^m ( A u. { A } ) ) |
| 6 | elex | |- ( A e. _om -> A e. _V ) |
|
| 7 | snex | |- { A } e. _V |
|
| 8 | 7 | a1i | |- ( A e. _om -> { A } e. _V ) |
| 9 | 2onn | |- 2o e. _om |
|
| 10 | 9 | elexi | |- 2o e. _V |
| 11 | 10 | a1i | |- ( A e. _om -> 2o e. _V ) |
| 12 | nnord | |- ( A e. _om -> Ord A ) |
|
| 13 | orddisj | |- ( Ord A -> ( A i^i { A } ) = (/) ) |
|
| 14 | 12 13 | syl | |- ( A e. _om -> ( A i^i { A } ) = (/) ) |
| 15 | mapunen | |- ( ( ( A e. _V /\ { A } e. _V /\ 2o e. _V ) /\ ( A i^i { A } ) = (/) ) -> ( 2o ^m ( A u. { A } ) ) ~~ ( ( 2o ^m A ) X. ( 2o ^m { A } ) ) ) |
|
| 16 | 6 8 11 14 15 | syl31anc | |- ( A e. _om -> ( 2o ^m ( A u. { A } ) ) ~~ ( ( 2o ^m A ) X. ( 2o ^m { A } ) ) ) |
| 17 | ovex | |- ( 2o ^m A ) e. _V |
|
| 18 | 17 | enref | |- ( 2o ^m A ) ~~ ( 2o ^m A ) |
| 19 | 2on | |- 2o e. On |
|
| 20 | 19 | a1i | |- ( A e. _om -> 2o e. On ) |
| 21 | id | |- ( A e. _om -> A e. _om ) |
|
| 22 | 20 21 | mapsnend | |- ( A e. _om -> ( 2o ^m { A } ) ~~ 2o ) |
| 23 | xpen | |- ( ( ( 2o ^m A ) ~~ ( 2o ^m A ) /\ ( 2o ^m { A } ) ~~ 2o ) -> ( ( 2o ^m A ) X. ( 2o ^m { A } ) ) ~~ ( ( 2o ^m A ) X. 2o ) ) |
|
| 24 | 18 22 23 | sylancr | |- ( A e. _om -> ( ( 2o ^m A ) X. ( 2o ^m { A } ) ) ~~ ( ( 2o ^m A ) X. 2o ) ) |
| 25 | entr | |- ( ( ( 2o ^m ( A u. { A } ) ) ~~ ( ( 2o ^m A ) X. ( 2o ^m { A } ) ) /\ ( ( 2o ^m A ) X. ( 2o ^m { A } ) ) ~~ ( ( 2o ^m A ) X. 2o ) ) -> ( 2o ^m ( A u. { A } ) ) ~~ ( ( 2o ^m A ) X. 2o ) ) |
|
| 26 | 16 24 25 | syl2anc | |- ( A e. _om -> ( 2o ^m ( A u. { A } ) ) ~~ ( ( 2o ^m A ) X. 2o ) ) |
| 27 | 5 26 | eqbrtrid | |- ( A e. _om -> ( 2o ^m suc A ) ~~ ( ( 2o ^m A ) X. 2o ) ) |
| 28 | 17 10 | xpcomen | |- ( ( 2o ^m A ) X. 2o ) ~~ ( 2o X. ( 2o ^m A ) ) |
| 29 | entr | |- ( ( ( 2o ^m suc A ) ~~ ( ( 2o ^m A ) X. 2o ) /\ ( ( 2o ^m A ) X. 2o ) ~~ ( 2o X. ( 2o ^m A ) ) ) -> ( 2o ^m suc A ) ~~ ( 2o X. ( 2o ^m A ) ) ) |
|
| 30 | 27 28 29 | sylancl | |- ( A e. _om -> ( 2o ^m suc A ) ~~ ( 2o X. ( 2o ^m A ) ) ) |
| 31 | 10 | enref | |- 2o ~~ 2o |
| 32 | pw2eng | |- ( A e. _om -> ~P A ~~ ( 2o ^m A ) ) |
|
| 33 | xpen | |- ( ( 2o ~~ 2o /\ ~P A ~~ ( 2o ^m A ) ) -> ( 2o X. ~P A ) ~~ ( 2o X. ( 2o ^m A ) ) ) |
|
| 34 | 31 32 33 | sylancr | |- ( A e. _om -> ( 2o X. ~P A ) ~~ ( 2o X. ( 2o ^m A ) ) ) |
| 35 | 34 | ensymd | |- ( A e. _om -> ( 2o X. ( 2o ^m A ) ) ~~ ( 2o X. ~P A ) ) |
| 36 | entr | |- ( ( ( 2o ^m suc A ) ~~ ( 2o X. ( 2o ^m A ) ) /\ ( 2o X. ( 2o ^m A ) ) ~~ ( 2o X. ~P A ) ) -> ( 2o ^m suc A ) ~~ ( 2o X. ~P A ) ) |
|
| 37 | 30 35 36 | syl2anc | |- ( A e. _om -> ( 2o ^m suc A ) ~~ ( 2o X. ~P A ) ) |
| 38 | entr | |- ( ( ~P suc A ~~ ( 2o ^m suc A ) /\ ( 2o ^m suc A ) ~~ ( 2o X. ~P A ) ) -> ~P suc A ~~ ( 2o X. ~P A ) ) |
|
| 39 | 3 37 38 | syl2anc | |- ( A e. _om -> ~P suc A ~~ ( 2o X. ~P A ) ) |
| 40 | xp2dju | |- ( 2o X. ~P A ) = ( ~P A |_| ~P A ) |
|
| 41 | 39 40 | breqtrdi | |- ( A e. _om -> ~P suc A ~~ ( ~P A |_| ~P A ) ) |
| 42 | nnfi | |- ( A e. _om -> A e. Fin ) |
|
| 43 | pwfi | |- ( A e. Fin <-> ~P A e. Fin ) |
|
| 44 | 42 43 | sylib | |- ( A e. _om -> ~P A e. Fin ) |
| 45 | ficardid | |- ( ~P A e. Fin -> ( card ` ~P A ) ~~ ~P A ) |
|
| 46 | 44 45 | syl | |- ( A e. _om -> ( card ` ~P A ) ~~ ~P A ) |
| 47 | djuen | |- ( ( ( card ` ~P A ) ~~ ~P A /\ ( card ` ~P A ) ~~ ~P A ) -> ( ( card ` ~P A ) |_| ( card ` ~P A ) ) ~~ ( ~P A |_| ~P A ) ) |
|
| 48 | 46 46 47 | syl2anc | |- ( A e. _om -> ( ( card ` ~P A ) |_| ( card ` ~P A ) ) ~~ ( ~P A |_| ~P A ) ) |
| 49 | 48 | ensymd | |- ( A e. _om -> ( ~P A |_| ~P A ) ~~ ( ( card ` ~P A ) |_| ( card ` ~P A ) ) ) |
| 50 | entr | |- ( ( ~P suc A ~~ ( ~P A |_| ~P A ) /\ ( ~P A |_| ~P A ) ~~ ( ( card ` ~P A ) |_| ( card ` ~P A ) ) ) -> ~P suc A ~~ ( ( card ` ~P A ) |_| ( card ` ~P A ) ) ) |
|
| 51 | 41 49 50 | syl2anc | |- ( A e. _om -> ~P suc A ~~ ( ( card ` ~P A ) |_| ( card ` ~P A ) ) ) |
| 52 | carden2b | |- ( ~P suc A ~~ ( ( card ` ~P A ) |_| ( card ` ~P A ) ) -> ( card ` ~P suc A ) = ( card ` ( ( card ` ~P A ) |_| ( card ` ~P A ) ) ) ) |
|
| 53 | 51 52 | syl | |- ( A e. _om -> ( card ` ~P suc A ) = ( card ` ( ( card ` ~P A ) |_| ( card ` ~P A ) ) ) ) |
| 54 | ficardom | |- ( ~P A e. Fin -> ( card ` ~P A ) e. _om ) |
|
| 55 | 44 54 | syl | |- ( A e. _om -> ( card ` ~P A ) e. _om ) |
| 56 | nnadju | |- ( ( ( card ` ~P A ) e. _om /\ ( card ` ~P A ) e. _om ) -> ( card ` ( ( card ` ~P A ) |_| ( card ` ~P A ) ) ) = ( ( card ` ~P A ) +o ( card ` ~P A ) ) ) |
|
| 57 | 55 55 56 | syl2anc | |- ( A e. _om -> ( card ` ( ( card ` ~P A ) |_| ( card ` ~P A ) ) ) = ( ( card ` ~P A ) +o ( card ` ~P A ) ) ) |
| 58 | 53 57 | eqtrd | |- ( A e. _om -> ( card ` ~P suc A ) = ( ( card ` ~P A ) +o ( card ` ~P A ) ) ) |