This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackbij1lem6 | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐴 ∪ 𝐵 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → 𝐴 ∈ Fin ) | |
| 2 | elinel2 | ⊢ ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) → 𝐵 ∈ Fin ) | |
| 3 | unfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
| 5 | elinel1 | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → 𝐴 ∈ 𝒫 ω ) | |
| 6 | elinel1 | ⊢ ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) → 𝐵 ∈ 𝒫 ω ) | |
| 7 | elpwi | ⊢ ( 𝐴 ∈ 𝒫 ω → 𝐴 ⊆ ω ) | |
| 8 | elpwi | ⊢ ( 𝐵 ∈ 𝒫 ω → 𝐵 ⊆ ω ) | |
| 9 | simpl | ⊢ ( ( 𝐴 ⊆ ω ∧ 𝐵 ⊆ ω ) → 𝐴 ⊆ ω ) | |
| 10 | simpr | ⊢ ( ( 𝐴 ⊆ ω ∧ 𝐵 ⊆ ω ) → 𝐵 ⊆ ω ) | |
| 11 | 9 10 | unssd | ⊢ ( ( 𝐴 ⊆ ω ∧ 𝐵 ⊆ ω ) → ( 𝐴 ∪ 𝐵 ) ⊆ ω ) |
| 12 | 7 8 11 | syl2an | ⊢ ( ( 𝐴 ∈ 𝒫 ω ∧ 𝐵 ∈ 𝒫 ω ) → ( 𝐴 ∪ 𝐵 ) ⊆ ω ) |
| 13 | 5 6 12 | syl2an | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ ω ) |
| 14 | 4 13 | elpwd | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝒫 ω ) |
| 15 | 14 4 | elind | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐴 ∪ 𝐵 ) ∈ ( 𝒫 ω ∩ Fin ) ) |