This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinal and ordinal sums of finite ordinals are equal. For a shorter proof using ax-rep , see nnadjuALT . (Contributed by Paul Chapman, 11-Apr-2009) (Revised by Mario Carneiro, 6-Feb-2013) Avoid ax-rep . (Revised by BTernaryTau, 2-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnadju | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( card ‘ ( 𝐴 ⊔ 𝐵 ) ) = ( 𝐴 +o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djueq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ⊔ 𝑥 ) = ( 𝐴 ⊔ 𝐵 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝐵 ) ) | |
| 3 | 1 2 | breq12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ⊔ 𝑥 ) ≈ ( 𝐴 +o 𝑥 ) ↔ ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 +o 𝐵 ) ) ) |
| 4 | 3 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ ω → ( 𝐴 ⊔ 𝑥 ) ≈ ( 𝐴 +o 𝑥 ) ) ↔ ( 𝐴 ∈ ω → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 +o 𝐵 ) ) ) ) |
| 5 | djueq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ⊔ 𝑥 ) = ( 𝐴 ⊔ ∅ ) ) | |
| 6 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o ∅ ) ) | |
| 7 | 5 6 | breq12d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ⊔ 𝑥 ) ≈ ( 𝐴 +o 𝑥 ) ↔ ( 𝐴 ⊔ ∅ ) ≈ ( 𝐴 +o ∅ ) ) ) |
| 8 | djueq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ⊔ 𝑥 ) = ( 𝐴 ⊔ 𝑦 ) ) | |
| 9 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ) | |
| 10 | 8 9 | breq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ⊔ 𝑥 ) ≈ ( 𝐴 +o 𝑥 ) ↔ ( 𝐴 ⊔ 𝑦 ) ≈ ( 𝐴 +o 𝑦 ) ) ) |
| 11 | djueq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ⊔ 𝑥 ) = ( 𝐴 ⊔ suc 𝑦 ) ) | |
| 12 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o suc 𝑦 ) ) | |
| 13 | 11 12 | breq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ⊔ 𝑥 ) ≈ ( 𝐴 +o 𝑥 ) ↔ ( 𝐴 ⊔ suc 𝑦 ) ≈ ( 𝐴 +o suc 𝑦 ) ) ) |
| 14 | dju0en | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ⊔ ∅ ) ≈ 𝐴 ) | |
| 15 | nna0 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 +o ∅ ) = 𝐴 ) | |
| 16 | 14 15 | breqtrrd | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ⊔ ∅ ) ≈ ( 𝐴 +o ∅ ) ) |
| 17 | 1oex | ⊢ 1o ∈ V | |
| 18 | djuassen | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ∧ 1o ∈ V ) → ( ( 𝐴 ⊔ 𝑦 ) ⊔ 1o ) ≈ ( 𝐴 ⊔ ( 𝑦 ⊔ 1o ) ) ) | |
| 19 | 17 18 | mp3an3 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ⊔ 𝑦 ) ⊔ 1o ) ≈ ( 𝐴 ⊔ ( 𝑦 ⊔ 1o ) ) ) |
| 20 | enrefg | ⊢ ( 𝐴 ∈ ω → 𝐴 ≈ 𝐴 ) | |
| 21 | nnord | ⊢ ( 𝑦 ∈ ω → Ord 𝑦 ) | |
| 22 | ordirr | ⊢ ( Ord 𝑦 → ¬ 𝑦 ∈ 𝑦 ) | |
| 23 | 21 22 | syl | ⊢ ( 𝑦 ∈ ω → ¬ 𝑦 ∈ 𝑦 ) |
| 24 | dju1en | ⊢ ( ( 𝑦 ∈ ω ∧ ¬ 𝑦 ∈ 𝑦 ) → ( 𝑦 ⊔ 1o ) ≈ suc 𝑦 ) | |
| 25 | 23 24 | mpdan | ⊢ ( 𝑦 ∈ ω → ( 𝑦 ⊔ 1o ) ≈ suc 𝑦 ) |
| 26 | djuen | ⊢ ( ( 𝐴 ≈ 𝐴 ∧ ( 𝑦 ⊔ 1o ) ≈ suc 𝑦 ) → ( 𝐴 ⊔ ( 𝑦 ⊔ 1o ) ) ≈ ( 𝐴 ⊔ suc 𝑦 ) ) | |
| 27 | 20 25 26 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ⊔ ( 𝑦 ⊔ 1o ) ) ≈ ( 𝐴 ⊔ suc 𝑦 ) ) |
| 28 | entr | ⊢ ( ( ( ( 𝐴 ⊔ 𝑦 ) ⊔ 1o ) ≈ ( 𝐴 ⊔ ( 𝑦 ⊔ 1o ) ) ∧ ( 𝐴 ⊔ ( 𝑦 ⊔ 1o ) ) ≈ ( 𝐴 ⊔ suc 𝑦 ) ) → ( ( 𝐴 ⊔ 𝑦 ) ⊔ 1o ) ≈ ( 𝐴 ⊔ suc 𝑦 ) ) | |
| 29 | 19 27 28 | syl2anc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ⊔ 𝑦 ) ⊔ 1o ) ≈ ( 𝐴 ⊔ suc 𝑦 ) ) |
| 30 | 29 | ensymd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ⊔ suc 𝑦 ) ≈ ( ( 𝐴 ⊔ 𝑦 ) ⊔ 1o ) ) |
| 31 | 17 | enref | ⊢ 1o ≈ 1o |
| 32 | djuen | ⊢ ( ( ( 𝐴 ⊔ 𝑦 ) ≈ ( 𝐴 +o 𝑦 ) ∧ 1o ≈ 1o ) → ( ( 𝐴 ⊔ 𝑦 ) ⊔ 1o ) ≈ ( ( 𝐴 +o 𝑦 ) ⊔ 1o ) ) | |
| 33 | 31 32 | mpan2 | ⊢ ( ( 𝐴 ⊔ 𝑦 ) ≈ ( 𝐴 +o 𝑦 ) → ( ( 𝐴 ⊔ 𝑦 ) ⊔ 1o ) ≈ ( ( 𝐴 +o 𝑦 ) ⊔ 1o ) ) |
| 34 | 33 | a1i | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ⊔ 𝑦 ) ≈ ( 𝐴 +o 𝑦 ) → ( ( 𝐴 ⊔ 𝑦 ) ⊔ 1o ) ≈ ( ( 𝐴 +o 𝑦 ) ⊔ 1o ) ) ) |
| 35 | nnacl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o 𝑦 ) ∈ ω ) | |
| 36 | nnord | ⊢ ( ( 𝐴 +o 𝑦 ) ∈ ω → Ord ( 𝐴 +o 𝑦 ) ) | |
| 37 | ordirr | ⊢ ( Ord ( 𝐴 +o 𝑦 ) → ¬ ( 𝐴 +o 𝑦 ) ∈ ( 𝐴 +o 𝑦 ) ) | |
| 38 | 35 36 37 | 3syl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ¬ ( 𝐴 +o 𝑦 ) ∈ ( 𝐴 +o 𝑦 ) ) |
| 39 | dju1en | ⊢ ( ( ( 𝐴 +o 𝑦 ) ∈ ω ∧ ¬ ( 𝐴 +o 𝑦 ) ∈ ( 𝐴 +o 𝑦 ) ) → ( ( 𝐴 +o 𝑦 ) ⊔ 1o ) ≈ suc ( 𝐴 +o 𝑦 ) ) | |
| 40 | 35 38 39 | syl2anc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 +o 𝑦 ) ⊔ 1o ) ≈ suc ( 𝐴 +o 𝑦 ) ) |
| 41 | nnasuc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) | |
| 42 | 40 41 | breqtrrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 +o 𝑦 ) ⊔ 1o ) ≈ ( 𝐴 +o suc 𝑦 ) ) |
| 43 | 34 42 | jctird | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ⊔ 𝑦 ) ≈ ( 𝐴 +o 𝑦 ) → ( ( ( 𝐴 ⊔ 𝑦 ) ⊔ 1o ) ≈ ( ( 𝐴 +o 𝑦 ) ⊔ 1o ) ∧ ( ( 𝐴 +o 𝑦 ) ⊔ 1o ) ≈ ( 𝐴 +o suc 𝑦 ) ) ) ) |
| 44 | entr | ⊢ ( ( ( ( 𝐴 ⊔ 𝑦 ) ⊔ 1o ) ≈ ( ( 𝐴 +o 𝑦 ) ⊔ 1o ) ∧ ( ( 𝐴 +o 𝑦 ) ⊔ 1o ) ≈ ( 𝐴 +o suc 𝑦 ) ) → ( ( 𝐴 ⊔ 𝑦 ) ⊔ 1o ) ≈ ( 𝐴 +o suc 𝑦 ) ) | |
| 45 | 43 44 | syl6 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ⊔ 𝑦 ) ≈ ( 𝐴 +o 𝑦 ) → ( ( 𝐴 ⊔ 𝑦 ) ⊔ 1o ) ≈ ( 𝐴 +o suc 𝑦 ) ) ) |
| 46 | entr | ⊢ ( ( ( 𝐴 ⊔ suc 𝑦 ) ≈ ( ( 𝐴 ⊔ 𝑦 ) ⊔ 1o ) ∧ ( ( 𝐴 ⊔ 𝑦 ) ⊔ 1o ) ≈ ( 𝐴 +o suc 𝑦 ) ) → ( 𝐴 ⊔ suc 𝑦 ) ≈ ( 𝐴 +o suc 𝑦 ) ) | |
| 47 | 30 45 46 | syl6an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ⊔ 𝑦 ) ≈ ( 𝐴 +o 𝑦 ) → ( 𝐴 ⊔ suc 𝑦 ) ≈ ( 𝐴 +o suc 𝑦 ) ) ) |
| 48 | 47 | expcom | ⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ ω → ( ( 𝐴 ⊔ 𝑦 ) ≈ ( 𝐴 +o 𝑦 ) → ( 𝐴 ⊔ suc 𝑦 ) ≈ ( 𝐴 +o suc 𝑦 ) ) ) ) |
| 49 | 7 10 13 16 48 | finds2 | ⊢ ( 𝑥 ∈ ω → ( 𝐴 ∈ ω → ( 𝐴 ⊔ 𝑥 ) ≈ ( 𝐴 +o 𝑥 ) ) ) |
| 50 | 4 49 | vtoclga | ⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 +o 𝐵 ) ) ) |
| 51 | 50 | impcom | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 +o 𝐵 ) ) |
| 52 | carden2b | ⊢ ( ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 +o 𝐵 ) → ( card ‘ ( 𝐴 ⊔ 𝐵 ) ) = ( card ‘ ( 𝐴 +o 𝐵 ) ) ) | |
| 53 | 51 52 | syl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( card ‘ ( 𝐴 ⊔ 𝐵 ) ) = ( card ‘ ( 𝐴 +o 𝐵 ) ) ) |
| 54 | nnacl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ∈ ω ) | |
| 55 | cardnn | ⊢ ( ( 𝐴 +o 𝐵 ) ∈ ω → ( card ‘ ( 𝐴 +o 𝐵 ) ) = ( 𝐴 +o 𝐵 ) ) | |
| 56 | 54 55 | syl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( card ‘ ( 𝐴 +o 𝐵 ) ) = ( 𝐴 +o 𝐵 ) ) |
| 57 | 53 56 | eqtrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( card ‘ ( 𝐴 ⊔ 𝐵 ) ) = ( 𝐴 +o 𝐵 ) ) |