This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of Mendelson p. 254. (Contributed by NM, 5-Jan-2004) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpcomen.1 | ⊢ 𝐴 ∈ V | |
| xpcomen.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | xpcomen | ⊢ ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcomen.1 | ⊢ 𝐴 ∈ V | |
| 2 | xpcomen.2 | ⊢ 𝐵 ∈ V | |
| 3 | 1 2 | xpex | ⊢ ( 𝐴 × 𝐵 ) ∈ V |
| 4 | 2 1 | xpex | ⊢ ( 𝐵 × 𝐴 ) ∈ V |
| 5 | eqid | ⊢ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ◡ { 𝑥 } ) = ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ◡ { 𝑥 } ) | |
| 6 | 5 | xpcomf1o | ⊢ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ◡ { 𝑥 } ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) |
| 7 | f1oen2g | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ V ∧ ( 𝐵 × 𝐴 ) ∈ V ∧ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ◡ { 𝑥 } ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) ) | |
| 8 | 3 4 6 7 | mp3an | ⊢ ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) |