This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power set of a set is equinumerous to set exponentiation with a base of ordinal 2o . (Contributed by FL, 22-Feb-2011) (Revised by Mario Carneiro, 1-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pw2eng | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) | |
| 2 | ovexd | ⊢ ( 𝐴 ∈ 𝑉 → ( { ∅ , { ∅ } } ↑m 𝐴 ) ∈ V ) | |
| 3 | id | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) | |
| 4 | 0ex | ⊢ ∅ ∈ V | |
| 5 | 4 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ∅ ∈ V ) |
| 6 | p0ex | ⊢ { ∅ } ∈ V | |
| 7 | 6 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → { ∅ } ∈ V ) |
| 8 | 0nep0 | ⊢ ∅ ≠ { ∅ } | |
| 9 | 8 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ∅ ≠ { ∅ } ) |
| 10 | eqid | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , { ∅ } , ∅ ) ) ) = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , { ∅ } , ∅ ) ) ) | |
| 11 | 3 5 7 9 10 | pw2f1o | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , { ∅ } , ∅ ) ) ) : 𝒫 𝐴 –1-1-onto→ ( { ∅ , { ∅ } } ↑m 𝐴 ) ) |
| 12 | f1oen2g | ⊢ ( ( 𝒫 𝐴 ∈ V ∧ ( { ∅ , { ∅ } } ↑m 𝐴 ) ∈ V ∧ ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , { ∅ } , ∅ ) ) ) : 𝒫 𝐴 –1-1-onto→ ( { ∅ , { ∅ } } ↑m 𝐴 ) ) → 𝒫 𝐴 ≈ ( { ∅ , { ∅ } } ↑m 𝐴 ) ) | |
| 13 | 1 2 11 12 | syl3anc | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ ( { ∅ , { ∅ } } ↑m 𝐴 ) ) |
| 14 | df2o2 | ⊢ 2o = { ∅ , { ∅ } } | |
| 15 | 14 | oveq1i | ⊢ ( 2o ↑m 𝐴 ) = ( { ∅ , { ∅ } } ↑m 𝐴 ) |
| 16 | 13 15 | breqtrrdi | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ) |