This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity law for set exponentiation of a disjoint union. Exercise 4.45 of Mendelson p. 255. (Contributed by NM, 23-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapunen | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ≈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovexd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∈ V ) | |
| 2 | ovexd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐶 ↑m 𝐴 ) ∈ V ) | |
| 3 | ovexd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐶 ↑m 𝐵 ) ∈ V ) | |
| 4 | 2 3 | xpexd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ∈ V ) |
| 5 | elmapi | ⊢ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) → 𝑥 : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) | |
| 6 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 7 | fssres | ⊢ ( ( 𝑥 : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ∧ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ) → ( 𝑥 ↾ 𝐴 ) : 𝐴 ⟶ 𝐶 ) | |
| 8 | 5 6 7 | sylancl | ⊢ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) → ( 𝑥 ↾ 𝐴 ) : 𝐴 ⟶ 𝐶 ) |
| 9 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 10 | fssres | ⊢ ( ( 𝑥 : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ∧ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) → ( 𝑥 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ) | |
| 11 | 5 9 10 | sylancl | ⊢ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) → ( 𝑥 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ) |
| 12 | 8 11 | jca | ⊢ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) → ( ( 𝑥 ↾ 𝐴 ) : 𝐴 ⟶ 𝐶 ∧ ( 𝑥 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ) ) |
| 13 | opelxp | ⊢ ( 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ↔ ( ( 𝑥 ↾ 𝐴 ) ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝑥 ↾ 𝐵 ) ∈ ( 𝐶 ↑m 𝐵 ) ) ) | |
| 14 | simpl3 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐶 ∈ 𝑋 ) | |
| 15 | simpl1 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐴 ∈ 𝑉 ) | |
| 16 | 14 15 | elmapd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝑥 ↾ 𝐴 ) ∈ ( 𝐶 ↑m 𝐴 ) ↔ ( 𝑥 ↾ 𝐴 ) : 𝐴 ⟶ 𝐶 ) ) |
| 17 | simpl2 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐵 ∈ 𝑊 ) | |
| 18 | 14 17 | elmapd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝑥 ↾ 𝐵 ) ∈ ( 𝐶 ↑m 𝐵 ) ↔ ( 𝑥 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ) ) |
| 19 | 16 18 | anbi12d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( ( 𝑥 ↾ 𝐴 ) ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝑥 ↾ 𝐵 ) ∈ ( 𝐶 ↑m 𝐵 ) ) ↔ ( ( 𝑥 ↾ 𝐴 ) : 𝐴 ⟶ 𝐶 ∧ ( 𝑥 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ) ) ) |
| 20 | 13 19 | bitrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ↔ ( ( 𝑥 ↾ 𝐴 ) : 𝐴 ⟶ 𝐶 ∧ ( 𝑥 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ) ) ) |
| 21 | 12 20 | imbitrrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) → 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) |
| 22 | xp1st | ⊢ ( 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) → ( 1st ‘ 𝑦 ) ∈ ( 𝐶 ↑m 𝐴 ) ) | |
| 23 | 22 | adantl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) → ( 1st ‘ 𝑦 ) ∈ ( 𝐶 ↑m 𝐴 ) ) |
| 24 | elmapi | ⊢ ( ( 1st ‘ 𝑦 ) ∈ ( 𝐶 ↑m 𝐴 ) → ( 1st ‘ 𝑦 ) : 𝐴 ⟶ 𝐶 ) | |
| 25 | 23 24 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) → ( 1st ‘ 𝑦 ) : 𝐴 ⟶ 𝐶 ) |
| 26 | xp2nd | ⊢ ( 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) → ( 2nd ‘ 𝑦 ) ∈ ( 𝐶 ↑m 𝐵 ) ) | |
| 27 | 26 | adantl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) → ( 2nd ‘ 𝑦 ) ∈ ( 𝐶 ↑m 𝐵 ) ) |
| 28 | elmapi | ⊢ ( ( 2nd ‘ 𝑦 ) ∈ ( 𝐶 ↑m 𝐵 ) → ( 2nd ‘ 𝑦 ) : 𝐵 ⟶ 𝐶 ) | |
| 29 | 27 28 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) → ( 2nd ‘ 𝑦 ) : 𝐵 ⟶ 𝐶 ) |
| 30 | simplr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) | |
| 31 | 25 29 30 | fun2d | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) → ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) |
| 32 | 31 | ex | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) → ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) ) |
| 33 | unexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) | |
| 34 | 15 17 33 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 35 | 14 34 | elmapd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ↔ ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) ) |
| 36 | 32 35 | sylibrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) → ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 37 | 1st2nd2 | ⊢ ( 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) | |
| 38 | 37 | ad2antll | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 39 | 25 | adantrl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( 1st ‘ 𝑦 ) : 𝐴 ⟶ 𝐶 ) |
| 40 | 29 | adantrl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( 2nd ‘ 𝑦 ) : 𝐵 ⟶ 𝐶 ) |
| 41 | res0 | ⊢ ( ( 1st ‘ 𝑦 ) ↾ ∅ ) = ∅ | |
| 42 | res0 | ⊢ ( ( 2nd ‘ 𝑦 ) ↾ ∅ ) = ∅ | |
| 43 | 41 42 | eqtr4i | ⊢ ( ( 1st ‘ 𝑦 ) ↾ ∅ ) = ( ( 2nd ‘ 𝑦 ) ↾ ∅ ) |
| 44 | simplr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) | |
| 45 | 44 | reseq2d | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( ( 1st ‘ 𝑦 ) ↾ ( 𝐴 ∩ 𝐵 ) ) = ( ( 1st ‘ 𝑦 ) ↾ ∅ ) ) |
| 46 | 44 | reseq2d | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( ( 2nd ‘ 𝑦 ) ↾ ( 𝐴 ∩ 𝐵 ) ) = ( ( 2nd ‘ 𝑦 ) ↾ ∅ ) ) |
| 47 | 43 45 46 | 3eqtr4a | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( ( 1st ‘ 𝑦 ) ↾ ( 𝐴 ∩ 𝐵 ) ) = ( ( 2nd ‘ 𝑦 ) ↾ ( 𝐴 ∩ 𝐵 ) ) ) |
| 48 | fresaunres1 | ⊢ ( ( ( 1st ‘ 𝑦 ) : 𝐴 ⟶ 𝐶 ∧ ( 2nd ‘ 𝑦 ) : 𝐵 ⟶ 𝐶 ∧ ( ( 1st ‘ 𝑦 ) ↾ ( 𝐴 ∩ 𝐵 ) ) = ( ( 2nd ‘ 𝑦 ) ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐴 ) = ( 1st ‘ 𝑦 ) ) | |
| 49 | 39 40 47 48 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐴 ) = ( 1st ‘ 𝑦 ) ) |
| 50 | fresaunres2 | ⊢ ( ( ( 1st ‘ 𝑦 ) : 𝐴 ⟶ 𝐶 ∧ ( 2nd ‘ 𝑦 ) : 𝐵 ⟶ 𝐶 ∧ ( ( 1st ‘ 𝑦 ) ↾ ( 𝐴 ∩ 𝐵 ) ) = ( ( 2nd ‘ 𝑦 ) ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐵 ) = ( 2nd ‘ 𝑦 ) ) | |
| 51 | 39 40 47 50 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐵 ) = ( 2nd ‘ 𝑦 ) ) |
| 52 | 49 51 | opeq12d | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → 〈 ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐴 ) , ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐵 ) 〉 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 53 | 38 52 | eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → 𝑦 = 〈 ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐴 ) , ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐵 ) 〉 ) |
| 54 | reseq1 | ⊢ ( 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) → ( 𝑥 ↾ 𝐴 ) = ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐴 ) ) | |
| 55 | reseq1 | ⊢ ( 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) → ( 𝑥 ↾ 𝐵 ) = ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐵 ) ) | |
| 56 | 54 55 | opeq12d | ⊢ ( 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) → 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 = 〈 ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐴 ) , ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐵 ) 〉 ) |
| 57 | 56 | eqeq2d | ⊢ ( 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) → ( 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 ↔ 𝑦 = 〈 ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐴 ) , ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐵 ) 〉 ) ) |
| 58 | 53 57 | syl5ibrcom | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) → 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 ) ) |
| 59 | ffn | ⊢ ( 𝑥 : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 → 𝑥 Fn ( 𝐴 ∪ 𝐵 ) ) | |
| 60 | fnresdm | ⊢ ( 𝑥 Fn ( 𝐴 ∪ 𝐵 ) → ( 𝑥 ↾ ( 𝐴 ∪ 𝐵 ) ) = 𝑥 ) | |
| 61 | 5 59 60 | 3syl | ⊢ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) → ( 𝑥 ↾ ( 𝐴 ∪ 𝐵 ) ) = 𝑥 ) |
| 62 | 61 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( 𝑥 ↾ ( 𝐴 ∪ 𝐵 ) ) = 𝑥 ) |
| 63 | 62 | eqcomd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → 𝑥 = ( 𝑥 ↾ ( 𝐴 ∪ 𝐵 ) ) ) |
| 64 | vex | ⊢ 𝑥 ∈ V | |
| 65 | 64 | resex | ⊢ ( 𝑥 ↾ 𝐴 ) ∈ V |
| 66 | 64 | resex | ⊢ ( 𝑥 ↾ 𝐵 ) ∈ V |
| 67 | 65 66 | op1std | ⊢ ( 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 → ( 1st ‘ 𝑦 ) = ( 𝑥 ↾ 𝐴 ) ) |
| 68 | 65 66 | op2ndd | ⊢ ( 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 → ( 2nd ‘ 𝑦 ) = ( 𝑥 ↾ 𝐵 ) ) |
| 69 | 67 68 | uneq12d | ⊢ ( 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 → ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑥 ↾ 𝐴 ) ∪ ( 𝑥 ↾ 𝐵 ) ) ) |
| 70 | resundi | ⊢ ( 𝑥 ↾ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑥 ↾ 𝐴 ) ∪ ( 𝑥 ↾ 𝐵 ) ) | |
| 71 | 69 70 | eqtr4di | ⊢ ( 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 → ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) = ( 𝑥 ↾ ( 𝐴 ∪ 𝐵 ) ) ) |
| 72 | 71 | eqeq2d | ⊢ ( 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 → ( 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↔ 𝑥 = ( 𝑥 ↾ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 73 | 63 72 | syl5ibrcom | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 → 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ) ) |
| 74 | 58 73 | impbid | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↔ 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 ) ) |
| 75 | 74 | ex | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) → ( 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↔ 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 ) ) ) |
| 76 | 1 4 21 36 75 | en3d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ≈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) |