This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| Assertion | ackbij1lem18 | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc ( 𝐹 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 2 | difss | ⊢ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ⊆ 𝐴 | |
| 3 | 1 | ackbij1lem11 | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ⊆ 𝐴 ) → ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| 5 | difss | ⊢ ( ω ∖ 𝐴 ) ⊆ ω | |
| 6 | omsson | ⊢ ω ⊆ On | |
| 7 | 5 6 | sstri | ⊢ ( ω ∖ 𝐴 ) ⊆ On |
| 8 | ominf | ⊢ ¬ ω ∈ Fin | |
| 9 | elinel2 | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → 𝐴 ∈ Fin ) | |
| 10 | difinf | ⊢ ( ( ¬ ω ∈ Fin ∧ 𝐴 ∈ Fin ) → ¬ ( ω ∖ 𝐴 ) ∈ Fin ) | |
| 11 | 8 9 10 | sylancr | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ¬ ( ω ∖ 𝐴 ) ∈ Fin ) |
| 12 | 0fi | ⊢ ∅ ∈ Fin | |
| 13 | eleq1 | ⊢ ( ( ω ∖ 𝐴 ) = ∅ → ( ( ω ∖ 𝐴 ) ∈ Fin ↔ ∅ ∈ Fin ) ) | |
| 14 | 12 13 | mpbiri | ⊢ ( ( ω ∖ 𝐴 ) = ∅ → ( ω ∖ 𝐴 ) ∈ Fin ) |
| 15 | 14 | necon3bi | ⊢ ( ¬ ( ω ∖ 𝐴 ) ∈ Fin → ( ω ∖ 𝐴 ) ≠ ∅ ) |
| 16 | 11 15 | syl | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ω ∖ 𝐴 ) ≠ ∅ ) |
| 17 | onint | ⊢ ( ( ( ω ∖ 𝐴 ) ⊆ On ∧ ( ω ∖ 𝐴 ) ≠ ∅ ) → ∩ ( ω ∖ 𝐴 ) ∈ ( ω ∖ 𝐴 ) ) | |
| 18 | 7 16 17 | sylancr | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ∩ ( ω ∖ 𝐴 ) ∈ ( ω ∖ 𝐴 ) ) |
| 19 | 18 | eldifad | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ∩ ( ω ∖ 𝐴 ) ∈ ω ) |
| 20 | ackbij1lem4 | ⊢ ( ∩ ( ω ∖ 𝐴 ) ∈ ω → { ∩ ( ω ∖ 𝐴 ) } ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → { ∩ ( ω ∖ 𝐴 ) } ∈ ( 𝒫 ω ∩ Fin ) ) |
| 22 | ackbij1lem6 | ⊢ ( ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∈ ( 𝒫 ω ∩ Fin ) ∧ { ∩ ( ω ∖ 𝐴 ) } ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 23 | 4 21 22 | syl2anc | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| 24 | 18 | eldifbd | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ¬ ∩ ( ω ∖ 𝐴 ) ∈ 𝐴 ) |
| 25 | disjsn | ⊢ ( ( 𝐴 ∩ { ∩ ( ω ∖ 𝐴 ) } ) = ∅ ↔ ¬ ∩ ( ω ∖ 𝐴 ) ∈ 𝐴 ) | |
| 26 | 24 25 | sylibr | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐴 ∩ { ∩ ( ω ∖ 𝐴 ) } ) = ∅ ) |
| 27 | ssdisj | ⊢ ( ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ⊆ 𝐴 ∧ ( 𝐴 ∩ { ∩ ( ω ∖ 𝐴 ) } ) = ∅ ) → ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∩ { ∩ ( ω ∖ 𝐴 ) } ) = ∅ ) | |
| 28 | 2 26 27 | sylancr | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∩ { ∩ ( ω ∖ 𝐴 ) } ) = ∅ ) |
| 29 | 1 | ackbij1lem9 | ⊢ ( ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∈ ( 𝒫 ω ∩ Fin ) ∧ { ∩ ( ω ∖ 𝐴 ) } ∈ ( 𝒫 ω ∩ Fin ) ∧ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∩ { ∩ ( ω ∖ 𝐴 ) } ) = ∅ ) → ( 𝐹 ‘ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) ) = ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ { ∩ ( ω ∖ 𝐴 ) } ) ) ) |
| 30 | 4 21 28 29 | syl3anc | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) ) = ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ { ∩ ( ω ∖ 𝐴 ) } ) ) ) |
| 31 | 1 | ackbij1lem14 | ⊢ ( ∩ ( ω ∖ 𝐴 ) ∈ ω → ( 𝐹 ‘ { ∩ ( ω ∖ 𝐴 ) } ) = suc ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) |
| 32 | 19 31 | syl | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ { ∩ ( ω ∖ 𝐴 ) } ) = suc ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) |
| 33 | 32 | oveq2d | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ { ∩ ( ω ∖ 𝐴 ) } ) ) = ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o suc ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) ) |
| 34 | 1 | ackbij1lem10 | ⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω |
| 35 | 34 | ffvelcdmi | ⊢ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) ∈ ω ) |
| 36 | 4 35 | syl | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) ∈ ω ) |
| 37 | ackbij1lem3 | ⊢ ( ∩ ( ω ∖ 𝐴 ) ∈ ω → ∩ ( ω ∖ 𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 38 | 19 37 | syl | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ∩ ( ω ∖ 𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| 39 | 34 | ffvelcdmi | ⊢ ( ∩ ( ω ∖ 𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ∈ ω ) |
| 40 | 38 39 | syl | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ∈ ω ) |
| 41 | nnasuc | ⊢ ( ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) ∈ ω ∧ ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ∈ ω ) → ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o suc ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) = suc ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) ) | |
| 42 | 36 40 41 | syl2anc | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o suc ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) = suc ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) ) |
| 43 | disjdifr | ⊢ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∩ ∩ ( ω ∖ 𝐴 ) ) = ∅ | |
| 44 | 43 | a1i | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∩ ∩ ( ω ∖ 𝐴 ) ) = ∅ ) |
| 45 | 1 | ackbij1lem9 | ⊢ ( ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∈ ( 𝒫 ω ∩ Fin ) ∧ ∩ ( ω ∖ 𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) ∧ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∩ ∩ ( ω ∖ 𝐴 ) ) = ∅ ) → ( 𝐹 ‘ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ ∩ ( ω ∖ 𝐴 ) ) ) = ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) ) |
| 46 | 4 38 44 45 | syl3anc | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ ∩ ( ω ∖ 𝐴 ) ) ) = ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) ) |
| 47 | uncom | ⊢ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ ∩ ( ω ∖ 𝐴 ) ) = ( ∩ ( ω ∖ 𝐴 ) ∪ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) | |
| 48 | onnmin | ⊢ ( ( ( ω ∖ 𝐴 ) ⊆ On ∧ 𝑎 ∈ ( ω ∖ 𝐴 ) ) → ¬ 𝑎 ∈ ∩ ( ω ∖ 𝐴 ) ) | |
| 49 | 7 48 | mpan | ⊢ ( 𝑎 ∈ ( ω ∖ 𝐴 ) → ¬ 𝑎 ∈ ∩ ( ω ∖ 𝐴 ) ) |
| 50 | 49 | con2i | ⊢ ( 𝑎 ∈ ∩ ( ω ∖ 𝐴 ) → ¬ 𝑎 ∈ ( ω ∖ 𝐴 ) ) |
| 51 | 50 | adantl | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑎 ∈ ∩ ( ω ∖ 𝐴 ) ) → ¬ 𝑎 ∈ ( ω ∖ 𝐴 ) ) |
| 52 | ordom | ⊢ Ord ω | |
| 53 | ordelss | ⊢ ( ( Ord ω ∧ ∩ ( ω ∖ 𝐴 ) ∈ ω ) → ∩ ( ω ∖ 𝐴 ) ⊆ ω ) | |
| 54 | 52 19 53 | sylancr | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ∩ ( ω ∖ 𝐴 ) ⊆ ω ) |
| 55 | 54 | sselda | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑎 ∈ ∩ ( ω ∖ 𝐴 ) ) → 𝑎 ∈ ω ) |
| 56 | eldif | ⊢ ( 𝑎 ∈ ( ω ∖ 𝐴 ) ↔ ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ 𝐴 ) ) | |
| 57 | 56 | simplbi2 | ⊢ ( 𝑎 ∈ ω → ( ¬ 𝑎 ∈ 𝐴 → 𝑎 ∈ ( ω ∖ 𝐴 ) ) ) |
| 58 | 57 | orrd | ⊢ ( 𝑎 ∈ ω → ( 𝑎 ∈ 𝐴 ∨ 𝑎 ∈ ( ω ∖ 𝐴 ) ) ) |
| 59 | 58 | orcomd | ⊢ ( 𝑎 ∈ ω → ( 𝑎 ∈ ( ω ∖ 𝐴 ) ∨ 𝑎 ∈ 𝐴 ) ) |
| 60 | 55 59 | syl | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑎 ∈ ∩ ( ω ∖ 𝐴 ) ) → ( 𝑎 ∈ ( ω ∖ 𝐴 ) ∨ 𝑎 ∈ 𝐴 ) ) |
| 61 | orel1 | ⊢ ( ¬ 𝑎 ∈ ( ω ∖ 𝐴 ) → ( ( 𝑎 ∈ ( ω ∖ 𝐴 ) ∨ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) ) | |
| 62 | 51 60 61 | sylc | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑎 ∈ ∩ ( ω ∖ 𝐴 ) ) → 𝑎 ∈ 𝐴 ) |
| 63 | 62 | ex | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝑎 ∈ ∩ ( ω ∖ 𝐴 ) → 𝑎 ∈ 𝐴 ) ) |
| 64 | 63 | ssrdv | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ∩ ( ω ∖ 𝐴 ) ⊆ 𝐴 ) |
| 65 | undif | ⊢ ( ∩ ( ω ∖ 𝐴 ) ⊆ 𝐴 ↔ ( ∩ ( ω ∖ 𝐴 ) ∪ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) = 𝐴 ) | |
| 66 | 64 65 | sylib | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ∩ ( ω ∖ 𝐴 ) ∪ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) = 𝐴 ) |
| 67 | 47 66 | eqtrid | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ ∩ ( ω ∖ 𝐴 ) ) = 𝐴 ) |
| 68 | 67 | fveq2d | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ ∩ ( ω ∖ 𝐴 ) ) ) = ( 𝐹 ‘ 𝐴 ) ) |
| 69 | 46 68 | eqtr3d | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) = ( 𝐹 ‘ 𝐴 ) ) |
| 70 | suceq | ⊢ ( ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) = ( 𝐹 ‘ 𝐴 ) → suc ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) = suc ( 𝐹 ‘ 𝐴 ) ) | |
| 71 | 69 70 | syl | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → suc ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) = suc ( 𝐹 ‘ 𝐴 ) ) |
| 72 | 42 71 | eqtrd | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( ( 𝐹 ‘ ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ) +o suc ( 𝐹 ‘ ∩ ( ω ∖ 𝐴 ) ) ) = suc ( 𝐹 ‘ 𝐴 ) ) |
| 73 | 30 33 72 | 3eqtrd | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) ) = suc ( 𝐹 ‘ 𝐴 ) ) |
| 74 | fveqeq2 | ⊢ ( 𝑏 = ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) → ( ( 𝐹 ‘ 𝑏 ) = suc ( 𝐹 ‘ 𝐴 ) ↔ ( 𝐹 ‘ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) ) = suc ( 𝐹 ‘ 𝐴 ) ) ) | |
| 75 | 74 | rspcev | ⊢ ( ( ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐹 ‘ ( ( 𝐴 ∖ ∩ ( ω ∖ 𝐴 ) ) ∪ { ∩ ( ω ∖ 𝐴 ) } ) ) = suc ( 𝐹 ‘ 𝐴 ) ) → ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc ( 𝐹 ‘ 𝐴 ) ) |
| 76 | 23 73 75 | syl2anc | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc ( 𝐹 ‘ 𝐴 ) ) |