This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| Assertion | ackbij1lem11 | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 2 | ssexg | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) → 𝐵 ∈ V ) | |
| 3 | elinel1 | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → 𝐴 ∈ 𝒫 ω ) | |
| 4 | 3 | elpwid | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → 𝐴 ⊆ ω ) |
| 5 | sstr | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ω ) → 𝐵 ⊆ ω ) | |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) → 𝐵 ⊆ ω ) |
| 7 | 2 6 | elpwd | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) → 𝐵 ∈ 𝒫 ω ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ 𝒫 ω ) |
| 9 | elinel2 | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → 𝐴 ∈ Fin ) | |
| 10 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) | |
| 11 | 9 10 | sylan | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |
| 12 | 8 11 | elind | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) |