This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| Assertion | ackbij1lem18 | |- ( A e. ( ~P _om i^i Fin ) -> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc ( F ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| 2 | difss | |- ( A \ |^| ( _om \ A ) ) C_ A |
|
| 3 | 1 | ackbij1lem11 | |- ( ( A e. ( ~P _om i^i Fin ) /\ ( A \ |^| ( _om \ A ) ) C_ A ) -> ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) ) |
| 4 | 2 3 | mpan2 | |- ( A e. ( ~P _om i^i Fin ) -> ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) ) |
| 5 | difss | |- ( _om \ A ) C_ _om |
|
| 6 | omsson | |- _om C_ On |
|
| 7 | 5 6 | sstri | |- ( _om \ A ) C_ On |
| 8 | ominf | |- -. _om e. Fin |
|
| 9 | elinel2 | |- ( A e. ( ~P _om i^i Fin ) -> A e. Fin ) |
|
| 10 | difinf | |- ( ( -. _om e. Fin /\ A e. Fin ) -> -. ( _om \ A ) e. Fin ) |
|
| 11 | 8 9 10 | sylancr | |- ( A e. ( ~P _om i^i Fin ) -> -. ( _om \ A ) e. Fin ) |
| 12 | 0fi | |- (/) e. Fin |
|
| 13 | eleq1 | |- ( ( _om \ A ) = (/) -> ( ( _om \ A ) e. Fin <-> (/) e. Fin ) ) |
|
| 14 | 12 13 | mpbiri | |- ( ( _om \ A ) = (/) -> ( _om \ A ) e. Fin ) |
| 15 | 14 | necon3bi | |- ( -. ( _om \ A ) e. Fin -> ( _om \ A ) =/= (/) ) |
| 16 | 11 15 | syl | |- ( A e. ( ~P _om i^i Fin ) -> ( _om \ A ) =/= (/) ) |
| 17 | onint | |- ( ( ( _om \ A ) C_ On /\ ( _om \ A ) =/= (/) ) -> |^| ( _om \ A ) e. ( _om \ A ) ) |
|
| 18 | 7 16 17 | sylancr | |- ( A e. ( ~P _om i^i Fin ) -> |^| ( _om \ A ) e. ( _om \ A ) ) |
| 19 | 18 | eldifad | |- ( A e. ( ~P _om i^i Fin ) -> |^| ( _om \ A ) e. _om ) |
| 20 | ackbij1lem4 | |- ( |^| ( _om \ A ) e. _om -> { |^| ( _om \ A ) } e. ( ~P _om i^i Fin ) ) |
|
| 21 | 19 20 | syl | |- ( A e. ( ~P _om i^i Fin ) -> { |^| ( _om \ A ) } e. ( ~P _om i^i Fin ) ) |
| 22 | ackbij1lem6 | |- ( ( ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) /\ { |^| ( _om \ A ) } e. ( ~P _om i^i Fin ) ) -> ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) e. ( ~P _om i^i Fin ) ) |
|
| 23 | 4 21 22 | syl2anc | |- ( A e. ( ~P _om i^i Fin ) -> ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) e. ( ~P _om i^i Fin ) ) |
| 24 | 18 | eldifbd | |- ( A e. ( ~P _om i^i Fin ) -> -. |^| ( _om \ A ) e. A ) |
| 25 | disjsn | |- ( ( A i^i { |^| ( _om \ A ) } ) = (/) <-> -. |^| ( _om \ A ) e. A ) |
|
| 26 | 24 25 | sylibr | |- ( A e. ( ~P _om i^i Fin ) -> ( A i^i { |^| ( _om \ A ) } ) = (/) ) |
| 27 | ssdisj | |- ( ( ( A \ |^| ( _om \ A ) ) C_ A /\ ( A i^i { |^| ( _om \ A ) } ) = (/) ) -> ( ( A \ |^| ( _om \ A ) ) i^i { |^| ( _om \ A ) } ) = (/) ) |
|
| 28 | 2 26 27 | sylancr | |- ( A e. ( ~P _om i^i Fin ) -> ( ( A \ |^| ( _om \ A ) ) i^i { |^| ( _om \ A ) } ) = (/) ) |
| 29 | 1 | ackbij1lem9 | |- ( ( ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) /\ { |^| ( _om \ A ) } e. ( ~P _om i^i Fin ) /\ ( ( A \ |^| ( _om \ A ) ) i^i { |^| ( _om \ A ) } ) = (/) ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) ) = ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` { |^| ( _om \ A ) } ) ) ) |
| 30 | 4 21 28 29 | syl3anc | |- ( A e. ( ~P _om i^i Fin ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) ) = ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` { |^| ( _om \ A ) } ) ) ) |
| 31 | 1 | ackbij1lem14 | |- ( |^| ( _om \ A ) e. _om -> ( F ` { |^| ( _om \ A ) } ) = suc ( F ` |^| ( _om \ A ) ) ) |
| 32 | 19 31 | syl | |- ( A e. ( ~P _om i^i Fin ) -> ( F ` { |^| ( _om \ A ) } ) = suc ( F ` |^| ( _om \ A ) ) ) |
| 33 | 32 | oveq2d | |- ( A e. ( ~P _om i^i Fin ) -> ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` { |^| ( _om \ A ) } ) ) = ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o suc ( F ` |^| ( _om \ A ) ) ) ) |
| 34 | 1 | ackbij1lem10 | |- F : ( ~P _om i^i Fin ) --> _om |
| 35 | 34 | ffvelcdmi | |- ( ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) -> ( F ` ( A \ |^| ( _om \ A ) ) ) e. _om ) |
| 36 | 4 35 | syl | |- ( A e. ( ~P _om i^i Fin ) -> ( F ` ( A \ |^| ( _om \ A ) ) ) e. _om ) |
| 37 | ackbij1lem3 | |- ( |^| ( _om \ A ) e. _om -> |^| ( _om \ A ) e. ( ~P _om i^i Fin ) ) |
|
| 38 | 19 37 | syl | |- ( A e. ( ~P _om i^i Fin ) -> |^| ( _om \ A ) e. ( ~P _om i^i Fin ) ) |
| 39 | 34 | ffvelcdmi | |- ( |^| ( _om \ A ) e. ( ~P _om i^i Fin ) -> ( F ` |^| ( _om \ A ) ) e. _om ) |
| 40 | 38 39 | syl | |- ( A e. ( ~P _om i^i Fin ) -> ( F ` |^| ( _om \ A ) ) e. _om ) |
| 41 | nnasuc | |- ( ( ( F ` ( A \ |^| ( _om \ A ) ) ) e. _om /\ ( F ` |^| ( _om \ A ) ) e. _om ) -> ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o suc ( F ` |^| ( _om \ A ) ) ) = suc ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) ) |
|
| 42 | 36 40 41 | syl2anc | |- ( A e. ( ~P _om i^i Fin ) -> ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o suc ( F ` |^| ( _om \ A ) ) ) = suc ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) ) |
| 43 | disjdifr | |- ( ( A \ |^| ( _om \ A ) ) i^i |^| ( _om \ A ) ) = (/) |
|
| 44 | 43 | a1i | |- ( A e. ( ~P _om i^i Fin ) -> ( ( A \ |^| ( _om \ A ) ) i^i |^| ( _om \ A ) ) = (/) ) |
| 45 | 1 | ackbij1lem9 | |- ( ( ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) /\ |^| ( _om \ A ) e. ( ~P _om i^i Fin ) /\ ( ( A \ |^| ( _om \ A ) ) i^i |^| ( _om \ A ) ) = (/) ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. |^| ( _om \ A ) ) ) = ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) ) |
| 46 | 4 38 44 45 | syl3anc | |- ( A e. ( ~P _om i^i Fin ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. |^| ( _om \ A ) ) ) = ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) ) |
| 47 | uncom | |- ( ( A \ |^| ( _om \ A ) ) u. |^| ( _om \ A ) ) = ( |^| ( _om \ A ) u. ( A \ |^| ( _om \ A ) ) ) |
|
| 48 | onnmin | |- ( ( ( _om \ A ) C_ On /\ a e. ( _om \ A ) ) -> -. a e. |^| ( _om \ A ) ) |
|
| 49 | 7 48 | mpan | |- ( a e. ( _om \ A ) -> -. a e. |^| ( _om \ A ) ) |
| 50 | 49 | con2i | |- ( a e. |^| ( _om \ A ) -> -. a e. ( _om \ A ) ) |
| 51 | 50 | adantl | |- ( ( A e. ( ~P _om i^i Fin ) /\ a e. |^| ( _om \ A ) ) -> -. a e. ( _om \ A ) ) |
| 52 | ordom | |- Ord _om |
|
| 53 | ordelss | |- ( ( Ord _om /\ |^| ( _om \ A ) e. _om ) -> |^| ( _om \ A ) C_ _om ) |
|
| 54 | 52 19 53 | sylancr | |- ( A e. ( ~P _om i^i Fin ) -> |^| ( _om \ A ) C_ _om ) |
| 55 | 54 | sselda | |- ( ( A e. ( ~P _om i^i Fin ) /\ a e. |^| ( _om \ A ) ) -> a e. _om ) |
| 56 | eldif | |- ( a e. ( _om \ A ) <-> ( a e. _om /\ -. a e. A ) ) |
|
| 57 | 56 | simplbi2 | |- ( a e. _om -> ( -. a e. A -> a e. ( _om \ A ) ) ) |
| 58 | 57 | orrd | |- ( a e. _om -> ( a e. A \/ a e. ( _om \ A ) ) ) |
| 59 | 58 | orcomd | |- ( a e. _om -> ( a e. ( _om \ A ) \/ a e. A ) ) |
| 60 | 55 59 | syl | |- ( ( A e. ( ~P _om i^i Fin ) /\ a e. |^| ( _om \ A ) ) -> ( a e. ( _om \ A ) \/ a e. A ) ) |
| 61 | orel1 | |- ( -. a e. ( _om \ A ) -> ( ( a e. ( _om \ A ) \/ a e. A ) -> a e. A ) ) |
|
| 62 | 51 60 61 | sylc | |- ( ( A e. ( ~P _om i^i Fin ) /\ a e. |^| ( _om \ A ) ) -> a e. A ) |
| 63 | 62 | ex | |- ( A e. ( ~P _om i^i Fin ) -> ( a e. |^| ( _om \ A ) -> a e. A ) ) |
| 64 | 63 | ssrdv | |- ( A e. ( ~P _om i^i Fin ) -> |^| ( _om \ A ) C_ A ) |
| 65 | undif | |- ( |^| ( _om \ A ) C_ A <-> ( |^| ( _om \ A ) u. ( A \ |^| ( _om \ A ) ) ) = A ) |
|
| 66 | 64 65 | sylib | |- ( A e. ( ~P _om i^i Fin ) -> ( |^| ( _om \ A ) u. ( A \ |^| ( _om \ A ) ) ) = A ) |
| 67 | 47 66 | eqtrid | |- ( A e. ( ~P _om i^i Fin ) -> ( ( A \ |^| ( _om \ A ) ) u. |^| ( _om \ A ) ) = A ) |
| 68 | 67 | fveq2d | |- ( A e. ( ~P _om i^i Fin ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. |^| ( _om \ A ) ) ) = ( F ` A ) ) |
| 69 | 46 68 | eqtr3d | |- ( A e. ( ~P _om i^i Fin ) -> ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) = ( F ` A ) ) |
| 70 | suceq | |- ( ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) = ( F ` A ) -> suc ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) = suc ( F ` A ) ) |
|
| 71 | 69 70 | syl | |- ( A e. ( ~P _om i^i Fin ) -> suc ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) = suc ( F ` A ) ) |
| 72 | 42 71 | eqtrd | |- ( A e. ( ~P _om i^i Fin ) -> ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o suc ( F ` |^| ( _om \ A ) ) ) = suc ( F ` A ) ) |
| 73 | 30 33 72 | 3eqtrd | |- ( A e. ( ~P _om i^i Fin ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) ) = suc ( F ` A ) ) |
| 74 | fveqeq2 | |- ( b = ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) -> ( ( F ` b ) = suc ( F ` A ) <-> ( F ` ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) ) = suc ( F ` A ) ) ) |
|
| 75 | 74 | rspcev | |- ( ( ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) e. ( ~P _om i^i Fin ) /\ ( F ` ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) ) = suc ( F ` A ) ) -> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc ( F ` A ) ) |
| 76 | 23 73 75 | syl2anc | |- ( A e. ( ~P _om i^i Fin ) -> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc ( F ` A ) ) |