This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 19-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| Assertion | ackbij1lem9 | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐹 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) +o ( 𝐹 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 2 | elinel2 | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → 𝐴 ∈ Fin ) | |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐴 ∈ Fin ) |
| 4 | snfi | ⊢ { 𝑦 } ∈ Fin | |
| 5 | elinel1 | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → 𝐴 ∈ 𝒫 ω ) | |
| 6 | 5 | elpwid | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → 𝐴 ⊆ ω ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐴 ⊆ ω ) |
| 8 | onfin2 | ⊢ ω = ( On ∩ Fin ) | |
| 9 | inss2 | ⊢ ( On ∩ Fin ) ⊆ Fin | |
| 10 | 8 9 | eqsstri | ⊢ ω ⊆ Fin |
| 11 | 7 10 | sstrdi | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐴 ⊆ Fin ) |
| 12 | 11 | sselda | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ Fin ) |
| 13 | pwfi | ⊢ ( 𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin ) | |
| 14 | 12 13 | sylib | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ 𝐴 ) → 𝒫 𝑦 ∈ Fin ) |
| 15 | xpfi | ⊢ ( ( { 𝑦 } ∈ Fin ∧ 𝒫 𝑦 ∈ Fin ) → ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ) | |
| 16 | 4 14 15 | sylancr | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ 𝐴 ) → ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ) |
| 17 | 16 | ralrimiva | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ∀ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ) |
| 18 | iunfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ) → ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ) | |
| 19 | 3 17 18 | syl2anc | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ) |
| 20 | ficardid | ⊢ ( ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin → ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ≈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ≈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) |
| 22 | elinel2 | ⊢ ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) → 𝐵 ∈ Fin ) | |
| 23 | 22 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐵 ∈ Fin ) |
| 24 | elinel1 | ⊢ ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) → 𝐵 ∈ 𝒫 ω ) | |
| 25 | 24 | elpwid | ⊢ ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) → 𝐵 ⊆ ω ) |
| 26 | 25 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐵 ⊆ ω ) |
| 27 | 26 10 | sstrdi | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐵 ⊆ Fin ) |
| 28 | 27 | sselda | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ Fin ) |
| 29 | 28 13 | sylib | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ 𝐵 ) → 𝒫 𝑦 ∈ Fin ) |
| 30 | 4 29 15 | sylancr | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ 𝐵 ) → ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ) |
| 31 | 30 | ralrimiva | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ∀ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ) |
| 32 | iunfi | ⊢ ( ( 𝐵 ∈ Fin ∧ ∀ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ) → ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ) | |
| 33 | 23 31 32 | syl2anc | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ) |
| 34 | ficardid | ⊢ ( ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin → ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ≈ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ≈ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) |
| 36 | djuen | ⊢ ( ( ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ≈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ∧ ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ≈ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) → ( ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ⊔ ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) ≈ ( ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ⊔ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 37 | 21 35 36 | syl2anc | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ⊔ ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) ≈ ( ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ⊔ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 38 | djudisj | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ∩ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) = ∅ ) | |
| 39 | 38 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ∩ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) = ∅ ) |
| 40 | endjudisj | ⊢ ( ( ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ∧ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ∧ ( ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ∩ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) = ∅ ) → ( ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ⊔ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ≈ ( ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ∪ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 41 | 19 33 39 40 | syl3anc | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ⊔ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ≈ ( ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ∪ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 42 | iunxun | ⊢ ∪ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( { 𝑦 } × 𝒫 𝑦 ) = ( ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ∪ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) | |
| 43 | 41 42 | breqtrrdi | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ⊔ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ≈ ∪ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( { 𝑦 } × 𝒫 𝑦 ) ) |
| 44 | entr | ⊢ ( ( ( ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ⊔ ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) ≈ ( ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ⊔ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ∧ ( ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ⊔ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ≈ ∪ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( { 𝑦 } × 𝒫 𝑦 ) ) → ( ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ⊔ ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) ≈ ∪ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( { 𝑦 } × 𝒫 𝑦 ) ) | |
| 45 | 37 43 44 | syl2anc | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ⊔ ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) ≈ ∪ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( { 𝑦 } × 𝒫 𝑦 ) ) |
| 46 | carden2b | ⊢ ( ( ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ⊔ ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) ≈ ∪ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( { 𝑦 } × 𝒫 𝑦 ) → ( card ‘ ( ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ⊔ ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) ) = ( card ‘ ∪ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 47 | 45 46 | syl | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( card ‘ ( ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ⊔ ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) ) = ( card ‘ ∪ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 48 | ficardom | ⊢ ( ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin → ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ∈ ω ) | |
| 49 | 19 48 | syl | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ∈ ω ) |
| 50 | ficardom | ⊢ ( ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin → ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ∈ ω ) | |
| 51 | 33 50 | syl | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ∈ ω ) |
| 52 | nnadju | ⊢ ( ( ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ∈ ω ∧ ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ∈ ω ) → ( card ‘ ( ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ⊔ ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) ) = ( ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) +o ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) ) | |
| 53 | 49 51 52 | syl2anc | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( card ‘ ( ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ⊔ ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) ) = ( ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) +o ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) ) |
| 54 | 47 53 | eqtr3d | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( card ‘ ∪ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( { 𝑦 } × 𝒫 𝑦 ) ) = ( ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) +o ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) ) |
| 55 | ackbij1lem6 | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐴 ∪ 𝐵 ) ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 56 | 55 | 3adant3 | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐴 ∪ 𝐵 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| 57 | 1 | ackbij1lem7 | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( card ‘ ∪ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 58 | 56 57 | syl | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐹 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( card ‘ ∪ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 59 | 1 | ackbij1lem7 | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ 𝐴 ) = ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 60 | 1 | ackbij1lem7 | ⊢ ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ 𝐵 ) = ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 61 | 59 60 | oveqan12d | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ 𝐴 ) +o ( 𝐹 ‘ 𝐵 ) ) = ( ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) +o ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) ) |
| 62 | 61 | 3adant3 | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐹 ‘ 𝐴 ) +o ( 𝐹 ‘ 𝐵 ) ) = ( ( card ‘ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝒫 𝑦 ) ) +o ( card ‘ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝒫 𝑦 ) ) ) ) |
| 63 | 54 58 62 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐹 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) +o ( 𝐹 ‘ 𝐵 ) ) ) |