This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of natural numbers is infinite. Corollary 6D(b) of Enderton p. 136. (Contributed by NM, 2-Jun-1998) Avoid ax-pow . (Revised by BTernaryTau, 2-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ominf | ⊢ ¬ ω ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi | ⊢ ( ω ∈ Fin ↔ ∃ 𝑥 ∈ ω ω ≈ 𝑥 ) | |
| 2 | nnord | ⊢ ( 𝑥 ∈ ω → Ord 𝑥 ) | |
| 3 | ordom | ⊢ Ord ω | |
| 4 | ordelssne | ⊢ ( ( Ord 𝑥 ∧ Ord ω ) → ( 𝑥 ∈ ω ↔ ( 𝑥 ⊆ ω ∧ 𝑥 ≠ ω ) ) ) | |
| 5 | 2 3 4 | sylancl | ⊢ ( 𝑥 ∈ ω → ( 𝑥 ∈ ω ↔ ( 𝑥 ⊆ ω ∧ 𝑥 ≠ ω ) ) ) |
| 6 | 5 | ibi | ⊢ ( 𝑥 ∈ ω → ( 𝑥 ⊆ ω ∧ 𝑥 ≠ ω ) ) |
| 7 | df-pss | ⊢ ( 𝑥 ⊊ ω ↔ ( 𝑥 ⊆ ω ∧ 𝑥 ≠ ω ) ) | |
| 8 | 6 7 | sylibr | ⊢ ( 𝑥 ∈ ω → 𝑥 ⊊ ω ) |
| 9 | nnfi | ⊢ ( 𝑥 ∈ ω → 𝑥 ∈ Fin ) | |
| 10 | ensymfib | ⊢ ( 𝑥 ∈ Fin → ( 𝑥 ≈ ω ↔ ω ≈ 𝑥 ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑥 ∈ ω → ( 𝑥 ≈ ω ↔ ω ≈ 𝑥 ) ) |
| 12 | 11 | biimpar | ⊢ ( ( 𝑥 ∈ ω ∧ ω ≈ 𝑥 ) → 𝑥 ≈ ω ) |
| 13 | pssinf | ⊢ ( ( 𝑥 ⊊ ω ∧ 𝑥 ≈ ω ) → ¬ ω ∈ Fin ) | |
| 14 | 8 12 13 | syl2an2r | ⊢ ( ( 𝑥 ∈ ω ∧ ω ≈ 𝑥 ) → ¬ ω ∈ Fin ) |
| 15 | 14 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ ω ω ≈ 𝑥 → ¬ ω ∈ Fin ) |
| 16 | 1 15 | sylbi | ⊢ ( ω ∈ Fin → ¬ ω ∈ Fin ) |
| 17 | pm2.01 | ⊢ ( ( ω ∈ Fin → ¬ ω ∈ Fin ) → ¬ ω ∈ Fin ) | |
| 18 | 16 17 | ax-mp | ⊢ ¬ ω ∈ Fin |