This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite set A minus a finite set is infinite. (Contributed by FL, 3-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difinf | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ¬ ( 𝐴 ∖ 𝐵 ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unfi | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∈ Fin ) | |
| 2 | undif1 | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) | |
| 3 | 2 | eleq1i | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∈ Fin ↔ ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
| 4 | unfir | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ Fin → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) | |
| 5 | 4 | simpld | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ Fin → 𝐴 ∈ Fin ) |
| 6 | 3 5 | sylbi | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∈ Fin → 𝐴 ∈ Fin ) |
| 7 | 1 6 | syl | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∈ Fin ∧ 𝐵 ∈ Fin ) → 𝐴 ∈ Fin ) |
| 8 | 7 | expcom | ⊢ ( 𝐵 ∈ Fin → ( ( 𝐴 ∖ 𝐵 ) ∈ Fin → 𝐴 ∈ Fin ) ) |
| 9 | 8 | con3d | ⊢ ( 𝐵 ∈ Fin → ( ¬ 𝐴 ∈ Fin → ¬ ( 𝐴 ∖ 𝐵 ) ∈ Fin ) ) |
| 10 | 9 | impcom | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ¬ ( 𝐴 ∖ 𝐵 ) ∈ Fin ) |