This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| Assertion | ackbij1lem16 | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) → 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 2 | inss1 | ⊢ ( 𝒫 ω ∩ Fin ) ⊆ 𝒫 ω | |
| 3 | 2 | sseli | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → 𝐴 ∈ 𝒫 ω ) |
| 4 | 3 | elpwid | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → 𝐴 ⊆ ω ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → 𝐴 ⊆ ω ) |
| 6 | 2 | sseli | ⊢ ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) → 𝐵 ∈ 𝒫 ω ) |
| 7 | 6 | elpwid | ⊢ ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) → 𝐵 ⊆ ω ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → 𝐵 ⊆ ω ) |
| 9 | 5 8 | unssd | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ ω ) |
| 10 | inss2 | ⊢ ( 𝒫 ω ∩ Fin ) ⊆ Fin | |
| 11 | 10 | sseli | ⊢ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) → 𝐴 ∈ Fin ) |
| 12 | 10 | sseli | ⊢ ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) → 𝐵 ∈ Fin ) |
| 13 | unfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) | |
| 14 | 11 12 13 | syl2an | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
| 15 | nnunifi | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ω ∧ ( 𝐴 ∪ 𝐵 ) ∈ Fin ) → ∪ ( 𝐴 ∪ 𝐵 ) ∈ ω ) | |
| 16 | 9 14 15 | syl2anc | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ∪ ( 𝐴 ∪ 𝐵 ) ∈ ω ) |
| 17 | peano2 | ⊢ ( ∪ ( 𝐴 ∪ 𝐵 ) ∈ ω → suc ∪ ( 𝐴 ∪ 𝐵 ) ∈ ω ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → suc ∪ ( 𝐴 ∪ 𝐵 ) ∈ ω ) |
| 19 | ineq2 | ⊢ ( 𝑎 = ∅ → ( 𝐴 ∩ 𝑎 ) = ( 𝐴 ∩ ∅ ) ) | |
| 20 | 19 | fveq2d | ⊢ ( 𝑎 = ∅ → ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐴 ∩ ∅ ) ) ) |
| 21 | ineq2 | ⊢ ( 𝑎 = ∅ → ( 𝐵 ∩ 𝑎 ) = ( 𝐵 ∩ ∅ ) ) | |
| 22 | 21 | fveq2d | ⊢ ( 𝑎 = ∅ → ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ ∅ ) ) ) |
| 23 | 20 22 | eqeq12d | ⊢ ( 𝑎 = ∅ → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ ∅ ) ) = ( 𝐹 ‘ ( 𝐵 ∩ ∅ ) ) ) ) |
| 24 | 19 21 | eqeq12d | ⊢ ( 𝑎 = ∅ → ( ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ↔ ( 𝐴 ∩ ∅ ) = ( 𝐵 ∩ ∅ ) ) ) |
| 25 | 23 24 | imbi12d | ⊢ ( 𝑎 = ∅ → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ) ↔ ( ( 𝐹 ‘ ( 𝐴 ∩ ∅ ) ) = ( 𝐹 ‘ ( 𝐵 ∩ ∅ ) ) → ( 𝐴 ∩ ∅ ) = ( 𝐵 ∩ ∅ ) ) ) ) |
| 26 | 25 | imbi2d | ⊢ ( 𝑎 = ∅ → ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ) ) ↔ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ ∅ ) ) = ( 𝐹 ‘ ( 𝐵 ∩ ∅ ) ) → ( 𝐴 ∩ ∅ ) = ( 𝐵 ∩ ∅ ) ) ) ) ) |
| 27 | ineq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝐴 ∩ 𝑎 ) = ( 𝐴 ∩ 𝑏 ) ) | |
| 28 | 27 | fveq2d | ⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
| 29 | ineq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝐵 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑏 ) ) | |
| 30 | 29 | fveq2d | ⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) |
| 31 | 28 30 | eqeq12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
| 32 | 27 29 | eqeq12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ↔ ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) ) |
| 33 | 31 32 | imbi12d | ⊢ ( 𝑎 = 𝑏 → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ) ↔ ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) ) ) |
| 34 | 33 | imbi2d | ⊢ ( 𝑎 = 𝑏 → ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ) ) ↔ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) ) ) ) |
| 35 | ineq2 | ⊢ ( 𝑎 = suc 𝑏 → ( 𝐴 ∩ 𝑎 ) = ( 𝐴 ∩ suc 𝑏 ) ) | |
| 36 | 35 | fveq2d | ⊢ ( 𝑎 = suc 𝑏 → ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) ) |
| 37 | ineq2 | ⊢ ( 𝑎 = suc 𝑏 → ( 𝐵 ∩ 𝑎 ) = ( 𝐵 ∩ suc 𝑏 ) ) | |
| 38 | 37 | fveq2d | ⊢ ( 𝑎 = suc 𝑏 → ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) |
| 39 | 36 38 | eqeq12d | ⊢ ( 𝑎 = suc 𝑏 → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ) |
| 40 | 35 37 | eqeq12d | ⊢ ( 𝑎 = suc 𝑏 → ( ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ↔ ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
| 41 | 39 40 | imbi12d | ⊢ ( 𝑎 = suc 𝑏 → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ) ↔ ( ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) |
| 42 | 41 | imbi2d | ⊢ ( 𝑎 = suc 𝑏 → ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ) ) ↔ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) ) |
| 43 | ineq2 | ⊢ ( 𝑎 = suc ∪ ( 𝐴 ∪ 𝐵 ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 44 | 43 | fveq2d | ⊢ ( 𝑎 = suc ∪ ( 𝐴 ∪ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 45 | ineq2 | ⊢ ( 𝑎 = suc ∪ ( 𝐴 ∪ 𝐵 ) → ( 𝐵 ∩ 𝑎 ) = ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 46 | 45 | fveq2d | ⊢ ( 𝑎 = suc ∪ ( 𝐴 ∪ 𝐵 ) → ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 47 | 44 46 | eqeq12d | ⊢ ( 𝑎 = suc ∪ ( 𝐴 ∪ 𝐵 ) → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |
| 48 | 43 45 | eqeq12d | ⊢ ( 𝑎 = suc ∪ ( 𝐴 ∪ 𝐵 ) → ( ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ↔ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 49 | 47 48 | imbi12d | ⊢ ( 𝑎 = suc ∪ ( 𝐴 ∪ 𝐵 ) → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ) ↔ ( ( 𝐹 ‘ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) → ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |
| 50 | 49 | imbi2d | ⊢ ( 𝑎 = suc ∪ ( 𝐴 ∪ 𝐵 ) → ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑎 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑎 ) ) → ( 𝐴 ∩ 𝑎 ) = ( 𝐵 ∩ 𝑎 ) ) ) ↔ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) → ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ) ) |
| 51 | in0 | ⊢ ( 𝐴 ∩ ∅ ) = ∅ | |
| 52 | in0 | ⊢ ( 𝐵 ∩ ∅ ) = ∅ | |
| 53 | 51 52 | eqtr4i | ⊢ ( 𝐴 ∩ ∅ ) = ( 𝐵 ∩ ∅ ) |
| 54 | 53 | 2a1i | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ ∅ ) ) = ( 𝐹 ‘ ( 𝐵 ∩ ∅ ) ) → ( 𝐴 ∩ ∅ ) = ( 𝐵 ∩ ∅ ) ) ) |
| 55 | simp13 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) | |
| 56 | 3simpa | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) ) | |
| 57 | ackbij1lem2 | ⊢ ( 𝑏 ∈ 𝐴 → ( 𝐴 ∩ suc 𝑏 ) = ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) ) | |
| 58 | 57 | fveq2d | ⊢ ( 𝑏 ∈ 𝐴 → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) ) ) |
| 59 | 58 | 3ad2ant2 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) ) ) |
| 60 | ackbij1lem4 | ⊢ ( 𝑏 ∈ ω → { 𝑏 } ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 61 | 60 | adantr | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → { 𝑏 } ∈ ( 𝒫 ω ∩ Fin ) ) |
| 62 | simprl | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 63 | inss1 | ⊢ ( 𝐴 ∩ 𝑏 ) ⊆ 𝐴 | |
| 64 | 1 | ackbij1lem11 | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝑏 ) ⊆ 𝐴 ) → ( 𝐴 ∩ 𝑏 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| 65 | 62 63 64 | sylancl | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( 𝐴 ∩ 𝑏 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| 66 | incom | ⊢ ( { 𝑏 } ∩ ( 𝐴 ∩ 𝑏 ) ) = ( ( 𝐴 ∩ 𝑏 ) ∩ { 𝑏 } ) | |
| 67 | inss2 | ⊢ ( 𝐴 ∩ 𝑏 ) ⊆ 𝑏 | |
| 68 | nnord | ⊢ ( 𝑏 ∈ ω → Ord 𝑏 ) | |
| 69 | orddisj | ⊢ ( Ord 𝑏 → ( 𝑏 ∩ { 𝑏 } ) = ∅ ) | |
| 70 | 68 69 | syl | ⊢ ( 𝑏 ∈ ω → ( 𝑏 ∩ { 𝑏 } ) = ∅ ) |
| 71 | 70 | adantr | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( 𝑏 ∩ { 𝑏 } ) = ∅ ) |
| 72 | ssdisj | ⊢ ( ( ( 𝐴 ∩ 𝑏 ) ⊆ 𝑏 ∧ ( 𝑏 ∩ { 𝑏 } ) = ∅ ) → ( ( 𝐴 ∩ 𝑏 ) ∩ { 𝑏 } ) = ∅ ) | |
| 73 | 67 71 72 | sylancr | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( ( 𝐴 ∩ 𝑏 ) ∩ { 𝑏 } ) = ∅ ) |
| 74 | 66 73 | eqtrid | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( { 𝑏 } ∩ ( 𝐴 ∩ 𝑏 ) ) = ∅ ) |
| 75 | 1 | ackbij1lem9 | ⊢ ( ( { 𝑏 } ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ 𝑏 ) ∈ ( 𝒫 ω ∩ Fin ) ∧ ( { 𝑏 } ∩ ( 𝐴 ∩ 𝑏 ) ) = ∅ ) → ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) ) |
| 76 | 61 65 74 75 | syl3anc | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) ) |
| 77 | 76 | 3ad2ant1 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) ) |
| 78 | 59 77 | eqtrd | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) ) |
| 79 | 56 78 | syl3an1 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) ) |
| 80 | ackbij1lem2 | ⊢ ( 𝑏 ∈ 𝐵 → ( 𝐵 ∩ suc 𝑏 ) = ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) | |
| 81 | 80 | fveq2d | ⊢ ( 𝑏 ∈ 𝐵 → ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) ) |
| 82 | 81 | 3ad2ant3 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) ) |
| 83 | simprr | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 84 | inss1 | ⊢ ( 𝐵 ∩ 𝑏 ) ⊆ 𝐵 | |
| 85 | 1 | ackbij1lem11 | ⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐵 ∩ 𝑏 ) ⊆ 𝐵 ) → ( 𝐵 ∩ 𝑏 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| 86 | 83 84 85 | sylancl | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( 𝐵 ∩ 𝑏 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| 87 | incom | ⊢ ( { 𝑏 } ∩ ( 𝐵 ∩ 𝑏 ) ) = ( ( 𝐵 ∩ 𝑏 ) ∩ { 𝑏 } ) | |
| 88 | inss2 | ⊢ ( 𝐵 ∩ 𝑏 ) ⊆ 𝑏 | |
| 89 | ssdisj | ⊢ ( ( ( 𝐵 ∩ 𝑏 ) ⊆ 𝑏 ∧ ( 𝑏 ∩ { 𝑏 } ) = ∅ ) → ( ( 𝐵 ∩ 𝑏 ) ∩ { 𝑏 } ) = ∅ ) | |
| 90 | 88 71 89 | sylancr | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( ( 𝐵 ∩ 𝑏 ) ∩ { 𝑏 } ) = ∅ ) |
| 91 | 87 90 | eqtrid | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( { 𝑏 } ∩ ( 𝐵 ∩ 𝑏 ) ) = ∅ ) |
| 92 | 1 | ackbij1lem9 | ⊢ ( ( { 𝑏 } ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐵 ∩ 𝑏 ) ∈ ( 𝒫 ω ∩ Fin ) ∧ ( { 𝑏 } ∩ ( 𝐵 ∩ 𝑏 ) ) = ∅ ) → ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
| 93 | 61 86 91 92 | syl3anc | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
| 94 | 93 | 3ad2ant1 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
| 95 | 82 94 | eqtrd | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
| 96 | 56 95 | syl3an1 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
| 97 | 55 79 96 | 3eqtr3d | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
| 98 | 1 | ackbij1lem10 | ⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω |
| 99 | 98 | ffvelcdmi | ⊢ ( { 𝑏 } ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ { 𝑏 } ) ∈ ω ) |
| 100 | 61 99 | syl | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( 𝐹 ‘ { 𝑏 } ) ∈ ω ) |
| 101 | 98 | ffvelcdmi | ⊢ ( ( 𝐴 ∩ 𝑏 ) ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ∈ ω ) |
| 102 | 65 101 | syl | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ∈ ω ) |
| 103 | 98 | ffvelcdmi | ⊢ ( ( 𝐵 ∩ 𝑏 ) ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ∈ ω ) |
| 104 | 86 103 | syl | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ∈ ω ) |
| 105 | nnacan | ⊢ ( ( ( 𝐹 ‘ { 𝑏 } ) ∈ ω ∧ ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ∈ ω ∧ ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ∈ ω ) → ( ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) | |
| 106 | 100 102 104 105 | syl3anc | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ) → ( ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
| 107 | 106 | 3adant3 | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
| 108 | 107 | 3ad2ant1 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
| 109 | 97 108 | mpbid | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) |
| 110 | uneq2 | ⊢ ( ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) → ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) = ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) | |
| 111 | 110 | adantl | ⊢ ( ( ( 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) = ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) |
| 112 | 57 | ad2antrr | ⊢ ( ( ( 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( { 𝑏 } ∪ ( 𝐴 ∩ 𝑏 ) ) ) |
| 113 | 80 | ad2antlr | ⊢ ( ( ( 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐵 ∩ suc 𝑏 ) = ( { 𝑏 } ∪ ( 𝐵 ∩ 𝑏 ) ) ) |
| 114 | 111 112 113 | 3eqtr4d | ⊢ ( ( ( 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) |
| 115 | 114 | ex | ⊢ ( ( 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
| 116 | 115 | 3adant1 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
| 117 | 109 116 | embantd | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
| 118 | 117 | 3exp | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( 𝑏 ∈ 𝐴 → ( 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) ) |
| 119 | simp13 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) | |
| 120 | 119 | eqcomd | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) ) |
| 121 | simp12r | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 122 | simp12l | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 123 | simp11 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ ω ) | |
| 124 | simp3 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) | |
| 125 | simp2 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ¬ 𝑏 ∈ 𝐴 ) | |
| 126 | 1 | ackbij1lem15 | ⊢ ( ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑏 ∈ ω ∧ 𝑏 ∈ 𝐵 ∧ ¬ 𝑏 ∈ 𝐴 ) ) → ¬ ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) ) |
| 127 | 121 122 123 124 125 126 | syl23anc | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ¬ ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) ) |
| 128 | 120 127 | pm2.21dd | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
| 129 | 128 | 3exp | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( ¬ 𝑏 ∈ 𝐴 → ( 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) ) |
| 130 | 118 129 | pm2.61d | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) |
| 131 | simp13 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) | |
| 132 | simp12l | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 133 | simp12r | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 134 | simp11 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ ω ) | |
| 135 | simp2 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐴 ) | |
| 136 | simp3 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ¬ 𝑏 ∈ 𝐵 ) | |
| 137 | 1 | ackbij1lem15 | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑏 ∈ ω ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) ) → ¬ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) |
| 138 | 132 133 134 135 136 137 | syl23anc | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ¬ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) |
| 139 | 131 138 | pm2.21dd | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
| 140 | 139 | 3exp | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( 𝑏 ∈ 𝐴 → ( ¬ 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) ) |
| 141 | simp13 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) | |
| 142 | ackbij1lem1 | ⊢ ( ¬ 𝑏 ∈ 𝐴 → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐴 ∩ 𝑏 ) ) | |
| 143 | 142 | adantr | ⊢ ( ( ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐴 ∩ 𝑏 ) ) |
| 144 | 143 | fveq2d | ⊢ ( ( ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
| 145 | ackbij1lem1 | ⊢ ( ¬ 𝑏 ∈ 𝐵 → ( 𝐵 ∩ suc 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) | |
| 146 | 145 | adantl | ⊢ ( ( ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( 𝐵 ∩ suc 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) |
| 147 | 146 | fveq2d | ⊢ ( ( ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) |
| 148 | 144 147 | eqeq12d | ⊢ ( ( ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ↔ ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
| 149 | 148 | biimpd | ⊢ ( ( ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) → ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
| 150 | 149 | 3adant1 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) → ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) ) |
| 151 | 141 150 | mpd | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) ) |
| 152 | 143 146 | eqeq12d | ⊢ ( ( ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ↔ ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) ) |
| 153 | 152 | biimprd | ⊢ ( ( ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
| 154 | 153 | 3adant1 | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
| 155 | 151 154 | embantd | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) ∧ ¬ 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
| 156 | 155 | 3exp | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( ¬ 𝑏 ∈ 𝐴 → ( ¬ 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) ) |
| 157 | 140 156 | pm2.61d | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( ¬ 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) |
| 158 | 130 157 | pm2.61d | ⊢ ( ( 𝑏 ∈ ω ∧ ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) ) → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) |
| 159 | 158 | 3exp | ⊢ ( 𝑏 ∈ ω → ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) ) |
| 160 | 159 | com34 | ⊢ ( 𝑏 ∈ ω → ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) ) |
| 161 | 160 | a2d | ⊢ ( 𝑏 ∈ ω → ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( 𝐵 ∩ 𝑏 ) ) ) → ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑏 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑏 ) ) → ( 𝐴 ∩ suc 𝑏 ) = ( 𝐵 ∩ suc 𝑏 ) ) ) ) ) |
| 162 | 26 34 42 50 54 161 | finds | ⊢ ( suc ∪ ( 𝐴 ∪ 𝐵 ) ∈ ω → ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) → ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |
| 163 | 18 162 | mpcom | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) → ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 164 | omsson | ⊢ ω ⊆ On | |
| 165 | 9 164 | sstrdi | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ On ) |
| 166 | onsucuni | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ On → ( 𝐴 ∪ 𝐵 ) ⊆ suc ∪ ( 𝐴 ∪ 𝐵 ) ) | |
| 167 | 165 166 | syl | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ suc ∪ ( 𝐴 ∪ 𝐵 ) ) |
| 168 | 167 | unssad | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → 𝐴 ⊆ suc ∪ ( 𝐴 ∪ 𝐵 ) ) |
| 169 | dfss2 | ⊢ ( 𝐴 ⊆ suc ∪ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = 𝐴 ) | |
| 170 | 168 169 | sylib | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = 𝐴 ) |
| 171 | 170 | fveq2d | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐹 ‘ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝐹 ‘ 𝐴 ) ) |
| 172 | 167 | unssbd | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → 𝐵 ⊆ suc ∪ ( 𝐴 ∪ 𝐵 ) ) |
| 173 | dfss2 | ⊢ ( 𝐵 ⊆ suc ∪ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = 𝐵 ) | |
| 174 | 172 173 | sylib | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = 𝐵 ) |
| 175 | 174 | fveq2d | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐹 ‘ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 176 | 171 175 | eqeq12d | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ) ↔ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) ) |
| 177 | 170 174 | eqeq12d | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐴 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) = ( 𝐵 ∩ suc ∪ ( 𝐴 ∪ 𝐵 ) ) ↔ 𝐴 = 𝐵 ) ) |
| 178 | 163 176 177 | 3imtr3d | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) → 𝐴 = 𝐵 ) ) |