This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| Assertion | ackbij1lem15 | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → ¬ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑐 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑐 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 2 | simpr1 | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → 𝑐 ∈ ω ) | |
| 3 | ackbij1lem3 | ⊢ ( 𝑐 ∈ ω → 𝑐 ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → 𝑐 ∈ ( 𝒫 ω ∩ Fin ) ) |
| 5 | simpr3 | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → ¬ 𝑐 ∈ 𝐵 ) | |
| 6 | ackbij1lem1 | ⊢ ( ¬ 𝑐 ∈ 𝐵 → ( 𝐵 ∩ suc 𝑐 ) = ( 𝐵 ∩ 𝑐 ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → ( 𝐵 ∩ suc 𝑐 ) = ( 𝐵 ∩ 𝑐 ) ) |
| 8 | inss2 | ⊢ ( 𝐵 ∩ 𝑐 ) ⊆ 𝑐 | |
| 9 | 7 8 | eqsstrdi | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → ( 𝐵 ∩ suc 𝑐 ) ⊆ 𝑐 ) |
| 10 | 1 | ackbij1lem12 | ⊢ ( ( 𝑐 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐵 ∩ suc 𝑐 ) ⊆ 𝑐 ) → ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑐 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
| 11 | 4 9 10 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑐 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
| 12 | 1 | ackbij1lem10 | ⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω |
| 13 | 12 | ffvelcdmi | ⊢ ( 𝑐 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ 𝑐 ) ∈ ω ) |
| 14 | nnon | ⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ ω → ( 𝐹 ‘ 𝑐 ) ∈ On ) | |
| 15 | onpsssuc | ⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ On → ( 𝐹 ‘ 𝑐 ) ⊊ suc ( 𝐹 ‘ 𝑐 ) ) | |
| 16 | 4 13 14 15 | 4syl | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑐 ) ⊊ suc ( 𝐹 ‘ 𝑐 ) ) |
| 17 | 1 | ackbij1lem14 | ⊢ ( 𝑐 ∈ ω → ( 𝐹 ‘ { 𝑐 } ) = suc ( 𝐹 ‘ 𝑐 ) ) |
| 18 | 2 17 | syl | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → ( 𝐹 ‘ { 𝑐 } ) = suc ( 𝐹 ‘ 𝑐 ) ) |
| 19 | 18 | psseq2d | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑐 ) ⊊ ( 𝐹 ‘ { 𝑐 } ) ↔ ( 𝐹 ‘ 𝑐 ) ⊊ suc ( 𝐹 ‘ 𝑐 ) ) ) |
| 20 | 16 19 | mpbird | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑐 ) ⊊ ( 𝐹 ‘ { 𝑐 } ) ) |
| 21 | simpll | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 22 | inss1 | ⊢ ( 𝐴 ∩ suc 𝑐 ) ⊆ 𝐴 | |
| 23 | 1 | ackbij1lem11 | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ suc 𝑐 ) ⊆ 𝐴 ) → ( 𝐴 ∩ suc 𝑐 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| 24 | 21 22 23 | sylancl | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → ( 𝐴 ∩ suc 𝑐 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| 25 | ssun1 | ⊢ { 𝑐 } ⊆ ( { 𝑐 } ∪ ( 𝐴 ∩ 𝑐 ) ) | |
| 26 | simpr2 | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → 𝑐 ∈ 𝐴 ) | |
| 27 | ackbij1lem2 | ⊢ ( 𝑐 ∈ 𝐴 → ( 𝐴 ∩ suc 𝑐 ) = ( { 𝑐 } ∪ ( 𝐴 ∩ 𝑐 ) ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → ( 𝐴 ∩ suc 𝑐 ) = ( { 𝑐 } ∪ ( 𝐴 ∩ 𝑐 ) ) ) |
| 29 | 25 28 | sseqtrrid | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → { 𝑐 } ⊆ ( 𝐴 ∩ suc 𝑐 ) ) |
| 30 | 1 | ackbij1lem12 | ⊢ ( ( ( 𝐴 ∩ suc 𝑐 ) ∈ ( 𝒫 ω ∩ Fin ) ∧ { 𝑐 } ⊆ ( 𝐴 ∩ suc 𝑐 ) ) → ( 𝐹 ‘ { 𝑐 } ) ⊆ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑐 ) ) ) |
| 31 | 24 29 30 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → ( 𝐹 ‘ { 𝑐 } ) ⊆ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑐 ) ) ) |
| 32 | 20 31 | psssstrd | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑐 ) ⊊ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑐 ) ) ) |
| 33 | 11 32 | sspsstrd | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑐 ) ) ⊊ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑐 ) ) ) |
| 34 | 33 | pssned | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑐 ) ) ≠ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑐 ) ) ) |
| 35 | 34 | necomd | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑐 ) ) ≠ ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑐 ) ) ) |
| 36 | 35 | neneqd | ⊢ ( ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ) ∧ ( 𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵 ) ) → ¬ ( 𝐹 ‘ ( 𝐴 ∩ suc 𝑐 ) ) = ( 𝐹 ‘ ( 𝐵 ∩ suc 𝑐 ) ) ) |