This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnunifi | ⊢ ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) → ∪ 𝑆 ∈ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq | ⊢ ( 𝑆 = ∅ → ∪ 𝑆 = ∪ ∅ ) | |
| 2 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 3 | peano1 | ⊢ ∅ ∈ ω | |
| 4 | 2 3 | eqeltri | ⊢ ∪ ∅ ∈ ω |
| 5 | 1 4 | eqeltrdi | ⊢ ( 𝑆 = ∅ → ∪ 𝑆 ∈ ω ) |
| 6 | 5 | adantl | ⊢ ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 = ∅ ) → ∪ 𝑆 ∈ ω ) |
| 7 | simpll | ⊢ ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ⊆ ω ) | |
| 8 | omsson | ⊢ ω ⊆ On | |
| 9 | 7 8 | sstrdi | ⊢ ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ⊆ On ) |
| 10 | simplr | ⊢ ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ∈ Fin ) | |
| 11 | simpr | ⊢ ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ≠ ∅ ) | |
| 12 | ordunifi | ⊢ ( ( 𝑆 ⊆ On ∧ 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ) → ∪ 𝑆 ∈ 𝑆 ) | |
| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → ∪ 𝑆 ∈ 𝑆 ) |
| 14 | 7 13 | sseldd | ⊢ ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → ∪ 𝑆 ∈ ω ) |
| 15 | 6 14 | pm2.61dane | ⊢ ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) → ∪ 𝑆 ∈ ω ) |