This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackbij1lem2 | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 ∩ suc 𝐴 ) = ( { 𝐴 } ∪ ( 𝐵 ∩ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc | ⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) | |
| 2 | 1 | ineq2i | ⊢ ( 𝐵 ∩ suc 𝐴 ) = ( 𝐵 ∩ ( 𝐴 ∪ { 𝐴 } ) ) |
| 3 | indi | ⊢ ( 𝐵 ∩ ( 𝐴 ∪ { 𝐴 } ) ) = ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∩ { 𝐴 } ) ) | |
| 4 | uncom | ⊢ ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∩ { 𝐴 } ) ) = ( ( 𝐵 ∩ { 𝐴 } ) ∪ ( 𝐵 ∩ 𝐴 ) ) | |
| 5 | 2 3 4 | 3eqtri | ⊢ ( 𝐵 ∩ suc 𝐴 ) = ( ( 𝐵 ∩ { 𝐴 } ) ∪ ( 𝐵 ∩ 𝐴 ) ) |
| 6 | snssi | ⊢ ( 𝐴 ∈ 𝐵 → { 𝐴 } ⊆ 𝐵 ) | |
| 7 | sseqin2 | ⊢ ( { 𝐴 } ⊆ 𝐵 ↔ ( 𝐵 ∩ { 𝐴 } ) = { 𝐴 } ) | |
| 8 | 6 7 | sylib | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 ∩ { 𝐴 } ) = { 𝐴 } ) |
| 9 | 8 | uneq1d | ⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐵 ∩ { 𝐴 } ) ∪ ( 𝐵 ∩ 𝐴 ) ) = ( { 𝐴 } ∪ ( 𝐵 ∩ 𝐴 ) ) ) |
| 10 | 5 9 | eqtrid | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 ∩ suc 𝐴 ) = ( { 𝐴 } ∪ ( 𝐵 ∩ 𝐴 ) ) ) |