This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any point A in a first-countable topology, there is a function f : NN --> J enumerating neighborhoods of A which is decreasing and forms a local base. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 1stcclb.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | 1stcfb | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stcclb.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | 1stcclb | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝒫 𝐽 ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 3 | simplr | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → 𝐴 ∈ 𝑋 ) | |
| 4 | eleq2 | ⊢ ( 𝑧 = 𝑋 → ( 𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝑋 ) ) | |
| 5 | sseq2 | ⊢ ( 𝑧 = 𝑋 → ( 𝑤 ⊆ 𝑧 ↔ 𝑤 ⊆ 𝑋 ) ) | |
| 6 | 5 | anbi2d | ⊢ ( 𝑧 = 𝑋 → ( ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋 ) ) ) |
| 7 | 6 | rexbidv | ⊢ ( 𝑧 = 𝑋 → ( ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋 ) ) ) |
| 8 | 4 7 | imbi12d | ⊢ ( 𝑧 = 𝑋 → ( ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ( 𝐴 ∈ 𝑋 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋 ) ) ) ) |
| 9 | simprrr | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) | |
| 10 | 1stctop | ⊢ ( 𝐽 ∈ 1stω → 𝐽 ∈ Top ) | |
| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → 𝐽 ∈ Top ) |
| 12 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → 𝑋 ∈ 𝐽 ) |
| 14 | 8 9 13 | rspcdva | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ( 𝐴 ∈ 𝑋 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋 ) ) ) |
| 15 | 3 14 | mpd | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋 ) ) |
| 16 | simpl | ⊢ ( ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋 ) → 𝐴 ∈ 𝑤 ) | |
| 17 | 16 | reximi | ⊢ ( ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋 ) → ∃ 𝑤 ∈ 𝑥 𝐴 ∈ 𝑤 ) |
| 18 | 15 17 | syl | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ∃ 𝑤 ∈ 𝑥 𝐴 ∈ 𝑤 ) |
| 19 | eleq2w | ⊢ ( 𝑤 = 𝑎 → ( 𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑎 ) ) | |
| 20 | 19 | cbvrexvw | ⊢ ( ∃ 𝑤 ∈ 𝑥 𝐴 ∈ 𝑤 ↔ ∃ 𝑎 ∈ 𝑥 𝐴 ∈ 𝑎 ) |
| 21 | 18 20 | sylib | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ∃ 𝑎 ∈ 𝑥 𝐴 ∈ 𝑎 ) |
| 22 | rabn0 | ⊢ ( { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≠ ∅ ↔ ∃ 𝑎 ∈ 𝑥 𝐴 ∈ 𝑎 ) | |
| 23 | 21 22 | sylibr | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≠ ∅ ) |
| 24 | vex | ⊢ 𝑥 ∈ V | |
| 25 | 24 | rabex | ⊢ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ∈ V |
| 26 | 25 | 0sdom | ⊢ ( ∅ ≺ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ↔ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≠ ∅ ) |
| 27 | 23 26 | sylibr | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ∅ ≺ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) |
| 28 | ssrab2 | ⊢ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ⊆ 𝑥 | |
| 29 | ssdomg | ⊢ ( 𝑥 ∈ V → ( { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ⊆ 𝑥 → { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≼ 𝑥 ) ) | |
| 30 | 24 28 29 | mp2 | ⊢ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≼ 𝑥 |
| 31 | simprrl | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → 𝑥 ≼ ω ) | |
| 32 | nnenom | ⊢ ℕ ≈ ω | |
| 33 | 32 | ensymi | ⊢ ω ≈ ℕ |
| 34 | domentr | ⊢ ( ( 𝑥 ≼ ω ∧ ω ≈ ℕ ) → 𝑥 ≼ ℕ ) | |
| 35 | 31 33 34 | sylancl | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → 𝑥 ≼ ℕ ) |
| 36 | domtr | ⊢ ( ( { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≼ 𝑥 ∧ 𝑥 ≼ ℕ ) → { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≼ ℕ ) | |
| 37 | 30 35 36 | sylancr | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≼ ℕ ) |
| 38 | fodomr | ⊢ ( ( ∅ ≺ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ∧ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≼ ℕ ) → ∃ 𝑔 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) | |
| 39 | 27 37 38 | syl2anc | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ∃ 𝑔 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) |
| 40 | 10 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → 𝐽 ∈ Top ) |
| 41 | imassrn | ⊢ ( 𝑔 “ ( 1 ... 𝑛 ) ) ⊆ ran 𝑔 | |
| 42 | forn | ⊢ ( 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } → ran 𝑔 = { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) | |
| 43 | 42 | ad2antll | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ran 𝑔 = { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) |
| 44 | simprll | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → 𝑥 ∈ 𝒫 𝐽 ) | |
| 45 | 44 | elpwid | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → 𝑥 ⊆ 𝐽 ) |
| 46 | 28 45 | sstrid | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ⊆ 𝐽 ) |
| 47 | 43 46 | eqsstrd | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ran 𝑔 ⊆ 𝐽 ) |
| 48 | 47 | adantr | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ran 𝑔 ⊆ 𝐽 ) |
| 49 | 41 48 | sstrid | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑔 “ ( 1 ... 𝑛 ) ) ⊆ 𝐽 ) |
| 50 | fz1ssnn | ⊢ ( 1 ... 𝑛 ) ⊆ ℕ | |
| 51 | fof | ⊢ ( 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } → 𝑔 : ℕ ⟶ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) | |
| 52 | 51 | ad2antll | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → 𝑔 : ℕ ⟶ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) |
| 53 | 52 | fdmd | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → dom 𝑔 = ℕ ) |
| 54 | 50 53 | sseqtrrid | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ( 1 ... 𝑛 ) ⊆ dom 𝑔 ) |
| 55 | 54 | adantr | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ⊆ dom 𝑔 ) |
| 56 | sseqin2 | ⊢ ( ( 1 ... 𝑛 ) ⊆ dom 𝑔 ↔ ( dom 𝑔 ∩ ( 1 ... 𝑛 ) ) = ( 1 ... 𝑛 ) ) | |
| 57 | 55 56 | sylib | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( dom 𝑔 ∩ ( 1 ... 𝑛 ) ) = ( 1 ... 𝑛 ) ) |
| 58 | elfz1end | ⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( 1 ... 𝑛 ) ) | |
| 59 | ne0i | ⊢ ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 1 ... 𝑛 ) ≠ ∅ ) | |
| 60 | 59 | adantl | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ( 1 ... 𝑛 ) ) → ( 1 ... 𝑛 ) ≠ ∅ ) |
| 61 | 58 60 | sylan2b | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ≠ ∅ ) |
| 62 | 57 61 | eqnetrd | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( dom 𝑔 ∩ ( 1 ... 𝑛 ) ) ≠ ∅ ) |
| 63 | imadisj | ⊢ ( ( 𝑔 “ ( 1 ... 𝑛 ) ) = ∅ ↔ ( dom 𝑔 ∩ ( 1 ... 𝑛 ) ) = ∅ ) | |
| 64 | 63 | necon3bii | ⊢ ( ( 𝑔 “ ( 1 ... 𝑛 ) ) ≠ ∅ ↔ ( dom 𝑔 ∩ ( 1 ... 𝑛 ) ) ≠ ∅ ) |
| 65 | 62 64 | sylibr | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑔 “ ( 1 ... 𝑛 ) ) ≠ ∅ ) |
| 66 | fzfid | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ∈ Fin ) | |
| 67 | 52 | ffund | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → Fun 𝑔 ) |
| 68 | fores | ⊢ ( ( Fun 𝑔 ∧ ( 1 ... 𝑛 ) ⊆ dom 𝑔 ) → ( 𝑔 ↾ ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) –onto→ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) | |
| 69 | 67 55 68 | syl2an2r | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑔 ↾ ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) –onto→ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) |
| 70 | fofi | ⊢ ( ( ( 1 ... 𝑛 ) ∈ Fin ∧ ( 𝑔 ↾ ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) –onto→ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ Fin ) | |
| 71 | 66 69 70 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ Fin ) |
| 72 | fiinopn | ⊢ ( 𝐽 ∈ Top → ( ( ( 𝑔 “ ( 1 ... 𝑛 ) ) ⊆ 𝐽 ∧ ( 𝑔 “ ( 1 ... 𝑛 ) ) ≠ ∅ ∧ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ Fin ) → ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ 𝐽 ) ) | |
| 73 | 72 | imp | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑔 “ ( 1 ... 𝑛 ) ) ⊆ 𝐽 ∧ ( 𝑔 “ ( 1 ... 𝑛 ) ) ≠ ∅ ∧ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ Fin ) ) → ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ 𝐽 ) |
| 74 | 40 49 65 71 73 | syl13anc | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ 𝐽 ) |
| 75 | 74 | fmpttd | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) : ℕ ⟶ 𝐽 ) |
| 76 | imassrn | ⊢ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ ran 𝑔 | |
| 77 | 43 | adantr | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ran 𝑔 = { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) |
| 78 | 76 77 | sseqtrid | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) |
| 79 | id | ⊢ ( 𝐴 ∈ 𝑛 → 𝐴 ∈ 𝑛 ) | |
| 80 | 79 | rgenw | ⊢ ∀ 𝑛 ∈ 𝑥 ( 𝐴 ∈ 𝑛 → 𝐴 ∈ 𝑛 ) |
| 81 | eleq2w | ⊢ ( 𝑎 = 𝑛 → ( 𝐴 ∈ 𝑎 ↔ 𝐴 ∈ 𝑛 ) ) | |
| 82 | 81 | ralrab | ⊢ ( ∀ 𝑛 ∈ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } 𝐴 ∈ 𝑛 ↔ ∀ 𝑛 ∈ 𝑥 ( 𝐴 ∈ 𝑛 → 𝐴 ∈ 𝑛 ) ) |
| 83 | 80 82 | mpbir | ⊢ ∀ 𝑛 ∈ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } 𝐴 ∈ 𝑛 |
| 84 | ssralv | ⊢ ( ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } → ( ∀ 𝑛 ∈ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } 𝐴 ∈ 𝑛 → ∀ 𝑛 ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) 𝐴 ∈ 𝑛 ) ) | |
| 85 | 78 83 84 | mpisyl | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ∀ 𝑛 ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) 𝐴 ∈ 𝑛 ) |
| 86 | elintg | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ↔ ∀ 𝑛 ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) 𝐴 ∈ 𝑛 ) ) | |
| 87 | 86 | ad3antlr | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ∈ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ↔ ∀ 𝑛 ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) 𝐴 ∈ 𝑛 ) ) |
| 88 | 85 87 | mpbird | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) |
| 89 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) | |
| 90 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 1 ... 𝑛 ) = ( 1 ... 𝑘 ) ) | |
| 91 | 90 | imaeq2d | ⊢ ( 𝑛 = 𝑘 → ( 𝑔 “ ( 1 ... 𝑛 ) ) = ( 𝑔 “ ( 1 ... 𝑘 ) ) ) |
| 92 | 91 | inteqd | ⊢ ( 𝑛 = 𝑘 → ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) = ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) |
| 93 | simpr | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) | |
| 94 | 74 | ralrimiva | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ∀ 𝑛 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ 𝐽 ) |
| 95 | 92 | eleq1d | ⊢ ( 𝑛 = 𝑘 → ( ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ 𝐽 ↔ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ∈ 𝐽 ) ) |
| 96 | 95 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ 𝐽 ∧ 𝑘 ∈ ℕ ) → ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ∈ 𝐽 ) |
| 97 | 94 96 | sylan | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ∈ 𝐽 ) |
| 98 | 89 92 93 97 | fvmptd3 | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) = ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) |
| 99 | 88 98 | eleqtrrd | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) |
| 100 | fzssp1 | ⊢ ( 1 ... 𝑘 ) ⊆ ( 1 ... ( 𝑘 + 1 ) ) | |
| 101 | imass2 | ⊢ ( ( 1 ... 𝑘 ) ⊆ ( 1 ... ( 𝑘 + 1 ) ) → ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ) | |
| 102 | 100 101 | mp1i | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ) |
| 103 | intss | ⊢ ( ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) → ∩ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ⊆ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) | |
| 104 | 102 103 | syl | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ∩ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ⊆ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) |
| 105 | oveq2 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 1 ... 𝑛 ) = ( 1 ... ( 𝑘 + 1 ) ) ) | |
| 106 | 105 | imaeq2d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑔 “ ( 1 ... 𝑛 ) ) = ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ) |
| 107 | 106 | inteqd | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) = ∩ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ) |
| 108 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 109 | 108 | adantl | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 110 | 107 | eleq1d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ 𝐽 ↔ ∩ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ∈ 𝐽 ) ) |
| 111 | 110 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ 𝐽 ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ∩ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ∈ 𝐽 ) |
| 112 | 94 108 111 | syl2an | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ∩ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ∈ 𝐽 ) |
| 113 | 89 107 109 112 | fvmptd3 | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) = ∩ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ) |
| 114 | 104 113 98 | 3sstr4d | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) |
| 115 | 99 114 | jca | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ∈ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 116 | 115 | ralrimiva | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 117 | simprlr | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) | |
| 118 | eleq2w | ⊢ ( 𝑧 = 𝑦 → ( 𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝑦 ) ) | |
| 119 | sseq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑤 ⊆ 𝑧 ↔ 𝑤 ⊆ 𝑦 ) ) | |
| 120 | 119 | anbi2d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) ) |
| 121 | 120 | rexbidv | ⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) ) |
| 122 | 118 121 | imbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ( 𝐴 ∈ 𝑦 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) ) ) |
| 123 | 122 | rspccva | ⊢ ( ( ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑦 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) ) |
| 124 | 117 123 | sylan | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑦 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) ) |
| 125 | eleq2w | ⊢ ( 𝑎 = 𝑤 → ( 𝐴 ∈ 𝑎 ↔ 𝐴 ∈ 𝑤 ) ) | |
| 126 | 125 | rexrab | ⊢ ( ∃ 𝑤 ∈ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } 𝑤 ⊆ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) |
| 127 | 43 | rexeqdv | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ( ∃ 𝑤 ∈ ran 𝑔 𝑤 ⊆ 𝑦 ↔ ∃ 𝑤 ∈ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } 𝑤 ⊆ 𝑦 ) ) |
| 128 | fofn | ⊢ ( 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } → 𝑔 Fn ℕ ) | |
| 129 | 128 | ad2antll | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → 𝑔 Fn ℕ ) |
| 130 | sseq1 | ⊢ ( 𝑤 = ( 𝑔 ‘ 𝑘 ) → ( 𝑤 ⊆ 𝑦 ↔ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑦 ) ) | |
| 131 | 130 | rexrn | ⊢ ( 𝑔 Fn ℕ → ( ∃ 𝑤 ∈ ran 𝑔 𝑤 ⊆ 𝑦 ↔ ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑦 ) ) |
| 132 | 129 131 | syl | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ( ∃ 𝑤 ∈ ran 𝑔 𝑤 ⊆ 𝑦 ↔ ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑦 ) ) |
| 133 | 127 132 | bitr3d | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ( ∃ 𝑤 ∈ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } 𝑤 ⊆ 𝑦 ↔ ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑦 ) ) |
| 134 | 133 | adantr | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( ∃ 𝑤 ∈ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } 𝑤 ⊆ 𝑦 ↔ ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑦 ) ) |
| 135 | elfz1end | ⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( 1 ... 𝑘 ) ) | |
| 136 | fz1ssnn | ⊢ ( 1 ... 𝑘 ) ⊆ ℕ | |
| 137 | 53 | adantr | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → dom 𝑔 = ℕ ) |
| 138 | 136 137 | sseqtrrid | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 1 ... 𝑘 ) ⊆ dom 𝑔 ) |
| 139 | funfvima2 | ⊢ ( ( Fun 𝑔 ∧ ( 1 ... 𝑘 ) ⊆ dom 𝑔 ) → ( 𝑘 ∈ ( 1 ... 𝑘 ) → ( 𝑔 ‘ 𝑘 ) ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) ) | |
| 140 | 67 138 139 | syl2an2r | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑘 ∈ ( 1 ... 𝑘 ) → ( 𝑔 ‘ 𝑘 ) ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) ) |
| 141 | 140 | imp | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑘 ∈ ( 1 ... 𝑘 ) ) → ( 𝑔 ‘ 𝑘 ) ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) |
| 142 | 135 141 | sylan2b | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑔 ‘ 𝑘 ) ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) |
| 143 | intss1 | ⊢ ( ( 𝑔 ‘ 𝑘 ) ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) → ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) | |
| 144 | sstr2 | ⊢ ( ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) → ( ( 𝑔 ‘ 𝑘 ) ⊆ 𝑦 → ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) | |
| 145 | 142 143 144 | 3syl | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑘 ) ⊆ 𝑦 → ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) |
| 146 | 145 | reximdva | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑦 → ∃ 𝑘 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) |
| 147 | 134 146 | sylbid | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( ∃ 𝑤 ∈ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } 𝑤 ⊆ 𝑦 → ∃ 𝑘 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) |
| 148 | 126 147 | biimtrrid | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) → ∃ 𝑘 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) |
| 149 | 124 148 | syld | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) |
| 150 | 98 | sseq1d | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ↔ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) |
| 151 | 150 | rexbidva | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ( ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ↔ ∃ 𝑘 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) |
| 152 | 151 | adantr | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ↔ ∃ 𝑘 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) |
| 153 | 149 152 | sylibrd | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ) ) |
| 154 | 153 | ralrimiva | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ) ) |
| 155 | nnex | ⊢ ℕ ∈ V | |
| 156 | 155 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ∈ V |
| 157 | feq1 | ⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( 𝑓 : ℕ ⟶ 𝐽 ↔ ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) : ℕ ⟶ 𝐽 ) ) | |
| 158 | fveq1 | ⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( 𝑓 ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) | |
| 159 | 158 | eleq2d | ⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ↔ 𝐴 ∈ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 160 | fveq1 | ⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( 𝑓 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ) | |
| 161 | 160 158 | sseq12d | ⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ↔ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 162 | 159 161 | anbi12d | ⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ↔ ( 𝐴 ∈ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) |
| 163 | 162 | ralbidv | ⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) |
| 164 | 158 | sseq1d | ⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ↔ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ) ) |
| 165 | 164 | rexbidv | ⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ↔ ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ) ) |
| 166 | 165 | imbi2d | ⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ↔ ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ) ) ) |
| 167 | 166 | ralbidv | ⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ) ) ) |
| 168 | 157 163 167 | 3anbi123d | ⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( ( 𝑓 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ) ↔ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ) ) ) ) |
| 169 | 156 168 | spcev | ⊢ ( ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ) ) |
| 170 | 75 116 154 169 | syl3anc | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ) ) |
| 171 | 170 | expr | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) → ( 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ) ) ) |
| 172 | 171 | adantrrl | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ( 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ) ) ) |
| 173 | 172 | exlimdv | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ( ∃ 𝑔 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ) ) ) |
| 174 | 39 173 | mpd | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ) ) |
| 175 | 2 174 | rexlimddv | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ) ) |