This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003) (Proof shortened by JJ, 26-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elintg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ) | |
| 2 | 1 | ralbidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) ) |
| 3 | dfint2 | ⊢ ∩ 𝐵 = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 } | |
| 4 | 2 3 | elab2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) ) |