This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of Kreyszig p. 30. This proof uses countable choice ax-cc . A space satisfying the conclusion of this theorem is called a sequential space, so the theorem can also be stated as "every first-countable space is a sequential space". (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 1stcelcls.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | 1stcelcls | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stcelcls.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | simpll | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝐽 ∈ 1stω ) | |
| 3 | 1stctop | ⊢ ( 𝐽 ∈ 1stω → 𝐽 ∈ Top ) | |
| 4 | 1 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 5 | 3 4 | sylan | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 6 | 5 | sselda | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑃 ∈ 𝑋 ) |
| 7 | 1 | 1stcfb | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑃 ∈ 𝑋 ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) |
| 8 | 2 6 7 | syl2anc | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) |
| 9 | simpr2 | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ) | |
| 10 | simpl | ⊢ ( ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) → 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ) | |
| 11 | 10 | ralimi | ⊢ ( ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ℕ 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ) |
| 12 | 9 11 | syl | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ∀ 𝑘 ∈ ℕ 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ) |
| 13 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑛 ) ) | |
| 14 | 13 | eleq2d | ⊢ ( 𝑘 = 𝑛 → ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ↔ 𝑃 ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
| 15 | 14 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ℕ 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ ( 𝑔 ‘ 𝑛 ) ) |
| 16 | 12 15 | sylan | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ ( 𝑔 ‘ 𝑛 ) ) |
| 17 | eleq2 | ⊢ ( 𝑦 = ( 𝑔 ‘ 𝑛 ) → ( 𝑃 ∈ 𝑦 ↔ 𝑃 ∈ ( 𝑔 ‘ 𝑛 ) ) ) | |
| 18 | ineq1 | ⊢ ( 𝑦 = ( 𝑔 ‘ 𝑛 ) → ( 𝑦 ∩ 𝑆 ) = ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ) | |
| 19 | 18 | neeq1d | ⊢ ( 𝑦 = ( 𝑔 ‘ 𝑛 ) → ( ( 𝑦 ∩ 𝑆 ) ≠ ∅ ↔ ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ≠ ∅ ) ) |
| 20 | 17 19 | imbi12d | ⊢ ( 𝑦 = ( 𝑔 ‘ 𝑛 ) → ( ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ↔ ( 𝑃 ∈ ( 𝑔 ‘ 𝑛 ) → ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 21 | 1 | elcls2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |
| 22 | 3 21 | sylan | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |
| 23 | 22 | simplbda | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) |
| 25 | simpr1 | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → 𝑔 : ℕ ⟶ 𝐽 ) | |
| 26 | 25 | ffvelcdmda | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑔 ‘ 𝑛 ) ∈ 𝐽 ) |
| 27 | 20 24 26 | rspcdva | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 ∈ ( 𝑔 ‘ 𝑛 ) → ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ≠ ∅ ) ) |
| 28 | 16 27 | mpd | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ≠ ∅ ) |
| 29 | elin | ⊢ ( 𝑥 ∈ ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ↔ ( 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ∧ 𝑥 ∈ 𝑆 ) ) | |
| 30 | 29 | biancomi | ⊢ ( 𝑥 ∈ ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ↔ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
| 31 | 30 | exbii | ⊢ ( ∃ 𝑥 𝑥 ∈ ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
| 32 | n0 | ⊢ ( ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ) | |
| 33 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝑆 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ) ) | |
| 34 | 31 32 33 | 3bitr4i | ⊢ ( ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ≠ ∅ ↔ ∃ 𝑥 ∈ 𝑆 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ) |
| 35 | 28 34 | sylib | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ∈ 𝑆 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ) |
| 36 | 3 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝐽 ∈ Top ) |
| 37 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 38 | 36 37 | syl | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑋 ∈ 𝐽 ) |
| 39 | simplr | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ 𝑋 ) | |
| 40 | 38 39 | ssexd | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ∈ V ) |
| 41 | fvi | ⊢ ( 𝑆 ∈ V → ( I ‘ 𝑆 ) = 𝑆 ) | |
| 42 | 40 41 | syl | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( I ‘ 𝑆 ) = 𝑆 ) |
| 43 | 42 | ad2antrr | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( I ‘ 𝑆 ) = 𝑆 ) |
| 44 | 35 43 | rexeqtrrdv | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ∈ ( I ‘ 𝑆 ) 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ) |
| 45 | 44 | ralrimiva | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ∀ 𝑛 ∈ ℕ ∃ 𝑥 ∈ ( I ‘ 𝑆 ) 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ) |
| 46 | fvex | ⊢ ( I ‘ 𝑆 ) ∈ V | |
| 47 | nnenom | ⊢ ℕ ≈ ω | |
| 48 | eleq1 | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑛 ) → ( 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ↔ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) | |
| 49 | 46 47 48 | axcc4 | ⊢ ( ∀ 𝑛 ∈ ℕ ∃ 𝑥 ∈ ( I ‘ 𝑆 ) 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
| 50 | 45 49 | syl | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
| 51 | 42 | feq3d | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) ↔ 𝑓 : ℕ ⟶ 𝑆 ) ) |
| 52 | 51 | biimpd | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) → 𝑓 : ℕ ⟶ 𝑆 ) ) |
| 53 | 52 | adantr | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) → 𝑓 : ℕ ⟶ 𝑆 ) ) |
| 54 | 6 | ad2antrr | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → 𝑃 ∈ 𝑋 ) |
| 55 | simplr3 | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) | |
| 56 | eleq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦 ) ) | |
| 57 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑗 ) ) | |
| 58 | 57 | sseq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ↔ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑥 ) ) |
| 59 | 58 | cbvrexvw | ⊢ ( ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ↔ ∃ 𝑗 ∈ ℕ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑥 ) |
| 60 | sseq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑔 ‘ 𝑗 ) ⊆ 𝑥 ↔ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 ) ) | |
| 61 | 60 | rexbidv | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑗 ∈ ℕ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑥 ↔ ∃ 𝑗 ∈ ℕ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 ) ) |
| 62 | 59 61 | bitrid | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ↔ ∃ 𝑗 ∈ ℕ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 ) ) |
| 63 | 56 62 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ↔ ( 𝑃 ∈ 𝑦 → ∃ 𝑗 ∈ ℕ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 ) ) ) |
| 64 | 63 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑃 ∈ 𝑦 → ∃ 𝑗 ∈ ℕ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 ) ) |
| 65 | 55 64 | sylan | ⊢ ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑃 ∈ 𝑦 → ∃ 𝑗 ∈ ℕ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 ) ) |
| 66 | simpr | ⊢ ( ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) → ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) | |
| 67 | 66 | ralimi | ⊢ ( ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) |
| 68 | 9 67 | syl | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) |
| 69 | 68 | adantr | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) |
| 70 | simprrr | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) → 𝑗 ∈ ℕ ) | |
| 71 | fveq2 | ⊢ ( 𝑛 = 𝑗 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑗 ) ) | |
| 72 | 71 | sseq1d | ⊢ ( 𝑛 = 𝑗 → ( ( 𝑔 ‘ 𝑛 ) ⊆ ( 𝑔 ‘ 𝑗 ) ↔ ( 𝑔 ‘ 𝑗 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) |
| 73 | 72 | imbi2d | ⊢ ( 𝑛 = 𝑗 → ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ 𝑛 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ↔ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ 𝑗 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 74 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑚 ) ) | |
| 75 | 74 | sseq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑔 ‘ 𝑛 ) ⊆ ( 𝑔 ‘ 𝑗 ) ↔ ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) |
| 76 | 75 | imbi2d | ⊢ ( 𝑛 = 𝑚 → ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ 𝑛 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ↔ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 77 | fveq2 | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) | |
| 78 | 77 | sseq1d | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑔 ‘ 𝑛 ) ⊆ ( 𝑔 ‘ 𝑗 ) ↔ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) |
| 79 | 78 | imbi2d | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ 𝑛 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ↔ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 80 | ssid | ⊢ ( 𝑔 ‘ 𝑗 ) ⊆ ( 𝑔 ‘ 𝑗 ) | |
| 81 | 80 | 2a1i | ⊢ ( 𝑗 ∈ ℤ → ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ 𝑗 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) |
| 82 | eluznn | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ℕ ) | |
| 83 | fvoveq1 | ⊢ ( 𝑘 = 𝑚 → ( 𝑔 ‘ ( 𝑘 + 1 ) ) = ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) | |
| 84 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑚 ) ) | |
| 85 | 83 84 | sseq12d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ↔ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑚 ) ) ) |
| 86 | 85 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑚 ) ) |
| 87 | 82 86 | sylan2 | ⊢ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑚 ) ) |
| 88 | 87 | anassrs | ⊢ ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑚 ) ) |
| 89 | sstr2 | ⊢ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑚 ) → ( ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) | |
| 90 | 88 89 | syl | ⊢ ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) |
| 91 | 90 | expcom | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 92 | 91 | a2d | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) → ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 93 | 73 76 79 76 81 92 | uzind4 | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) |
| 94 | 93 | com12 | ⊢ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) |
| 95 | 94 | ralrimiv | ⊢ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) |
| 96 | 69 70 95 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) |
| 97 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑚 ) ) | |
| 98 | 97 74 | eleq12d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ↔ ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑚 ) ) ) |
| 99 | simplr | ⊢ ( ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) → ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) | |
| 100 | 99 | ad2antlr | ⊢ ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) |
| 101 | 70 82 | sylan | ⊢ ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ℕ ) |
| 102 | 98 100 101 | rspcdva | ⊢ ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑚 ) ) |
| 103 | 102 | ralrimiva | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑚 ) ) |
| 104 | r19.26 | ⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ∧ ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑚 ) ) ↔ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑚 ) ) ) | |
| 105 | 96 103 104 | sylanbrc | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ∧ ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑚 ) ) ) |
| 106 | ssel2 | ⊢ ( ( ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ∧ ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑚 ) ) → ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑗 ) ) | |
| 107 | 106 | ralimi | ⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ∧ ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑚 ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑗 ) ) |
| 108 | 105 107 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑗 ) ) |
| 109 | ssel | ⊢ ( ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 → ( ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑗 ) → ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) | |
| 110 | 109 | ralimdv | ⊢ ( ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑗 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) |
| 111 | 108 110 | syl5com | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) → ( ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) |
| 112 | 111 | anassrs | ⊢ ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) → ( ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) |
| 113 | 112 | anassrs | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) |
| 114 | 113 | reximdva | ⊢ ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ 𝐽 ) → ( ∃ 𝑗 ∈ ℕ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 → ∃ 𝑗 ∈ ℕ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) |
| 115 | 65 114 | syld | ⊢ ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑃 ∈ 𝑦 → ∃ 𝑗 ∈ ℕ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) |
| 116 | 115 | ralrimiva | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ∃ 𝑗 ∈ ℕ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) |
| 117 | 36 | ad2antrr | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → 𝐽 ∈ Top ) |
| 118 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 119 | 117 118 | sylib | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 120 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 121 | 1zzd | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → 1 ∈ ℤ ) | |
| 122 | simprl | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → 𝑓 : ℕ ⟶ 𝑆 ) | |
| 123 | 39 | ad2antrr | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → 𝑆 ⊆ 𝑋 ) |
| 124 | 122 123 | fssd | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → 𝑓 : ℕ ⟶ 𝑋 ) |
| 125 | eqidd | ⊢ ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ 𝑚 ) ) | |
| 126 | 119 120 121 124 125 | lmbrf | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ∃ 𝑗 ∈ ℕ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) ) ) |
| 127 | 54 116 126 | mpbir2and | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
| 128 | 127 | expr | ⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑓 : ℕ ⟶ 𝑆 ) → ( ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) → 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) |
| 129 | 128 | imdistanda | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) → ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |
| 130 | 53 129 | syland | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ( ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) → ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |
| 131 | 130 | eximdv | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |
| 132 | 50 131 | mpd | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) |
| 133 | 8 132 | exlimddv | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) |
| 134 | 133 | ex | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |
| 135 | 3 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝐽 ∈ Top ) |
| 136 | 135 118 | sylib | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 137 | 1zzd | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 1 ∈ ℤ ) | |
| 138 | simprr | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | |
| 139 | simprl | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝑓 : ℕ ⟶ 𝑆 ) | |
| 140 | 139 | ffvelcdmda | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝑆 ) |
| 141 | simplr | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝑆 ⊆ 𝑋 ) | |
| 142 | 120 136 137 138 140 141 | lmcls | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 143 | 142 | ex | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 144 | 143 | exlimdv | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 145 | 134 144 | impbid | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |