This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping is continuous at P in a first-countable space X iff it is sequentially continuous at P , meaning that the image under F of every sequence converging at P converges to F ( P ) . This proof uses ax-cc , but only via 1stcelcls , so it could be refactored into a proof that continuity and sequential continuity are the same in sequential spaces. (Contributed by Mario Carneiro, 7-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1stccnp.1 | ⊢ ( 𝜑 → 𝐽 ∈ 1stω ) | |
| 1stccnp.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| 1stccnp.3 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| 1stccnp.4 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | ||
| Assertion | 1stccnp | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stccnp.1 | ⊢ ( 𝜑 → 𝐽 ∈ 1stω ) | |
| 2 | 1stccnp.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | 1stccnp.3 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 4 | 1stccnp.4 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | |
| 5 | 2 3 | jca | ⊢ ( 𝜑 → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ) |
| 6 | cnpf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 8 | 5 7 | sylan | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 9 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | |
| 10 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) | |
| 11 | 9 10 | lmcnp | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) |
| 12 | 11 | ex | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) |
| 13 | 12 | alrimiv | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) |
| 14 | 8 13 | jca | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) |
| 15 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 16 | fal | ⊢ ¬ ⊥ | |
| 17 | 19.29 | ⊢ ( ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ∧ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → ∃ 𝑓 ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) | |
| 18 | simprl | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) | |
| 19 | difss | ⊢ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ⊆ 𝑋 | |
| 20 | fss | ⊢ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ⊆ 𝑋 ) → 𝑓 : ℕ ⟶ 𝑋 ) | |
| 21 | 18 19 20 | sylancl | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝑓 : ℕ ⟶ 𝑋 ) |
| 22 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | |
| 23 | 21 22 | jca | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) |
| 24 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 25 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) | |
| 26 | 1zzd | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → 1 ∈ ℤ ) | |
| 27 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) | |
| 28 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → 𝑢 ∈ 𝐾 ) | |
| 29 | 24 25 26 27 28 | lmcvg | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝑢 ) |
| 30 | 24 | r19.2uz | ⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝑢 → ∃ 𝑘 ∈ ℕ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝑢 ) |
| 31 | simprll | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) | |
| 32 | 31 | ffnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → 𝑓 Fn ℕ ) |
| 33 | fvco2 | ⊢ ( ( 𝑓 Fn ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) | |
| 34 | 32 33 | sylan | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 35 | 34 | eleq1d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ∈ 𝑢 ) ) |
| 36 | 31 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 37 | 36 | eldifad | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝑋 ) |
| 38 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 39 | 38 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 40 | ffn | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → 𝐹 Fn 𝑋 ) | |
| 41 | elpreima | ⊢ ( 𝐹 Fn 𝑋 → ( ( 𝑓 ‘ 𝑘 ) ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( ( 𝑓 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ∈ 𝑢 ) ) ) | |
| 42 | 39 40 41 | 3syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑓 ‘ 𝑘 ) ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( ( 𝑓 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ∈ 𝑢 ) ) ) |
| 43 | 36 | eldifbd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ¬ ( 𝑓 ‘ 𝑘 ) ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
| 44 | 43 | pm2.21d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑓 ‘ 𝑘 ) ∈ ( ◡ 𝐹 “ 𝑢 ) → ⊥ ) ) |
| 45 | 42 44 | sylbird | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑓 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ∈ 𝑢 ) → ⊥ ) ) |
| 46 | 37 45 | mpand | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ∈ 𝑢 → ⊥ ) ) |
| 47 | 35 46 | sylbid | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝑢 → ⊥ ) ) |
| 48 | 47 | rexlimdva | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → ( ∃ 𝑘 ∈ ℕ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝑢 → ⊥ ) ) |
| 49 | 30 48 | syl5 | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝑢 → ⊥ ) ) |
| 50 | 29 49 | mpd | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → ⊥ ) |
| 51 | 50 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → ( ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) → ⊥ ) ) |
| 52 | 23 51 | embantd | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) → ⊥ ) ) |
| 53 | 52 | ex | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) → ⊥ ) ) ) |
| 54 | 53 | impcomd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → ⊥ ) ) |
| 55 | 54 | exlimdv | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ∃ 𝑓 ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → ⊥ ) ) |
| 56 | 17 55 | syl5 | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ∧ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → ⊥ ) ) |
| 57 | 56 | exp4b | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) → ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ⊥ ) ) ) ) |
| 58 | 57 | com23 | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) → ( ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ⊥ ) ) ) ) |
| 59 | 58 | impr | ⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) → ( ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ⊥ ) ) ) |
| 60 | 59 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ⊥ ) ) |
| 61 | 16 60 | mtoi | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ¬ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) |
| 62 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → 𝐽 ∈ 1stω ) |
| 63 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 64 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 65 | 63 64 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → 𝑋 = ∪ 𝐽 ) |
| 66 | 19 65 | sseqtrid | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ⊆ ∪ 𝐽 ) |
| 67 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 68 | 67 | 1stcelcls | ⊢ ( ( 𝐽 ∈ 1stω ∧ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ⊆ ∪ 𝐽 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |
| 69 | 62 66 68 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |
| 70 | 61 69 | mtbird | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ¬ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ) |
| 71 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 72 | 63 71 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → 𝐽 ∈ Top ) |
| 73 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → 𝑃 ∈ 𝑋 ) |
| 74 | 73 65 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → 𝑃 ∈ ∪ 𝐽 ) |
| 75 | 67 | elcls | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ↔ ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ) ) |
| 76 | 72 66 74 75 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ↔ ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ) ) |
| 77 | 70 76 | mtbid | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ¬ ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ) |
| 78 | 15 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 79 | 78 | ffund | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → Fun 𝐹 ) |
| 80 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) → 𝑣 ⊆ 𝑋 ) | |
| 81 | 63 80 | sylan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → 𝑣 ⊆ 𝑋 ) |
| 82 | 78 | fdmd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → dom 𝐹 = 𝑋 ) |
| 83 | 81 82 | sseqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → 𝑣 ⊆ dom 𝐹 ) |
| 84 | funimass3 | ⊢ ( ( Fun 𝐹 ∧ 𝑣 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ↔ 𝑣 ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) | |
| 85 | 79 83 84 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ↔ 𝑣 ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 86 | dfss2 | ⊢ ( 𝑣 ⊆ 𝑋 ↔ ( 𝑣 ∩ 𝑋 ) = 𝑣 ) | |
| 87 | 81 86 | sylib | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( 𝑣 ∩ 𝑋 ) = 𝑣 ) |
| 88 | 87 | sseq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( ( 𝑣 ∩ 𝑋 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ↔ 𝑣 ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 89 | 85 88 | bitr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ↔ ( 𝑣 ∩ 𝑋 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 90 | nne | ⊢ ( ¬ ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ↔ ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) = ∅ ) | |
| 91 | inssdif0 | ⊢ ( ( 𝑣 ∩ 𝑋 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) = ∅ ) | |
| 92 | 90 91 | bitr4i | ⊢ ( ¬ ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ↔ ( 𝑣 ∩ 𝑋 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) |
| 93 | 89 92 | bitr4di | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ↔ ¬ ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ) |
| 94 | 93 | anbi2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ↔ ( 𝑃 ∈ 𝑣 ∧ ¬ ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ) ) |
| 95 | 94 | rexbidva | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ¬ ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ) ) |
| 96 | rexanali | ⊢ ( ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ¬ ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ↔ ¬ ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ) | |
| 97 | 95 96 | bitrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ↔ ¬ ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ) ) |
| 98 | 77 97 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 99 | 98 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ 𝑢 ∈ 𝐾 ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) |
| 100 | 99 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) → ∀ 𝑢 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) |
| 101 | iscnp | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) ) ) | |
| 102 | 2 3 4 101 | syl3anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) ) ) |
| 103 | 102 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) ) ) |
| 104 | 15 100 103 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) |
| 105 | 14 104 | impbida | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ) |