This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any convergent sequence of points in a subset of a topological space converges to a point in the closure of the subset. (Contributed by Mario Carneiro, 30-Dec-2013) (Revised by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmff.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| lmff.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| lmff.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| lmcls.5 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | ||
| lmcls.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) | ||
| lmcls.8 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | ||
| Assertion | lmcls | ⊢ ( 𝜑 → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmff.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | lmff.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | lmff.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | lmcls.5 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | |
| 5 | lmcls.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) | |
| 6 | lmcls.8 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | |
| 7 | 2 1 3 | lmbr2 | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |
| 8 | 4 7 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
| 9 | 8 | simp3d | ⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 10 | 1 | r19.2uz | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ∃ 𝑘 ∈ 𝑍 ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 11 | inelcm | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) | |
| 12 | 11 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) |
| 13 | 5 12 | mpan2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) |
| 14 | 13 | adantld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) |
| 15 | 14 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑍 ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) |
| 16 | 10 15 | syl5 | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) |
| 17 | 16 | imim2d | ⊢ ( 𝜑 → ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) → ( 𝑃 ∈ 𝑢 → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 18 | 17 | ralimdv | ⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) → ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 19 | 9 18 | mpd | ⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) |
| 20 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 21 | 2 20 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 22 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 23 | 2 22 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 24 | 6 23 | sseqtrd | ⊢ ( 𝜑 → 𝑆 ⊆ ∪ 𝐽 ) |
| 25 | lmcl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝑃 ∈ 𝑋 ) | |
| 26 | 2 4 25 | syl2anc | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
| 27 | 26 23 | eleqtrd | ⊢ ( 𝜑 → 𝑃 ∈ ∪ 𝐽 ) |
| 28 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 29 | 28 | elcls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 30 | 21 24 27 29 | syl3anc | ⊢ ( 𝜑 → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ( 𝑢 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 31 | 19 30 | mpbird | ⊢ ( 𝜑 → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |