This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree of a one-edge graph, case 4: an edge from a vertex to itself contributes two to the vertex's degree. I. e. in a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has degree 2. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1loopgruspgr.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 1loopgruspgr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| 1loopgruspgr.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) | ||
| 1loopgruspgr.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) | ||
| Assertion | 1loopgrvd2 | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1loopgruspgr.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 2 | 1loopgruspgr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 3 | 1loopgruspgr.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) | |
| 4 | 1loopgruspgr.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) | |
| 5 | 1 2 3 4 | 1loopgruspgr | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
| 6 | uspgrushgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → 𝐺 ∈ USHGraph ) |
| 8 | 3 1 | eleqtrrd | ⊢ ( 𝜑 → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
| 9 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 10 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 11 | eqid | ⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) | |
| 12 | 9 10 11 | vtxdushgrfvedg | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } ) +𝑒 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } ) ) ) |
| 13 | 7 8 12 | syl2anc | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } ) +𝑒 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } ) ) ) |
| 14 | snex | ⊢ { 𝑁 } ∈ V | |
| 15 | sneq | ⊢ ( 𝑎 = { 𝑁 } → { 𝑎 } = { { 𝑁 } } ) | |
| 16 | 15 | eqeq2d | ⊢ ( 𝑎 = { 𝑁 } → ( { { 𝑁 } } = { 𝑎 } ↔ { { 𝑁 } } = { { 𝑁 } } ) ) |
| 17 | eqid | ⊢ { { 𝑁 } } = { { 𝑁 } } | |
| 18 | 14 16 17 | ceqsexv2d | ⊢ ∃ 𝑎 { { 𝑁 } } = { 𝑎 } |
| 19 | 18 | a1i | ⊢ ( 𝜑 → ∃ 𝑎 { { 𝑁 } } = { 𝑎 } ) |
| 20 | snidg | ⊢ ( 𝑁 ∈ 𝑉 → 𝑁 ∈ { 𝑁 } ) | |
| 21 | 3 20 | syl | ⊢ ( 𝜑 → 𝑁 ∈ { 𝑁 } ) |
| 22 | 21 | iftrued | ⊢ ( 𝜑 → if ( 𝑁 ∈ { 𝑁 } , { { 𝑁 } } , ∅ ) = { { 𝑁 } } ) |
| 23 | 22 | eqeq1d | ⊢ ( 𝜑 → ( if ( 𝑁 ∈ { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ↔ { { 𝑁 } } = { 𝑎 } ) ) |
| 24 | 23 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑎 if ( 𝑁 ∈ { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ↔ ∃ 𝑎 { { 𝑁 } } = { 𝑎 } ) ) |
| 25 | 19 24 | mpbird | ⊢ ( 𝜑 → ∃ 𝑎 if ( 𝑁 ∈ { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ) |
| 26 | 1 2 3 4 | 1loopgredg | ⊢ ( 𝜑 → ( Edg ‘ 𝐺 ) = { { 𝑁 } } ) |
| 27 | 26 | rabeqdv | ⊢ ( 𝜑 → { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } = { 𝑒 ∈ { { 𝑁 } } ∣ 𝑁 ∈ 𝑒 } ) |
| 28 | eleq2 | ⊢ ( 𝑒 = { 𝑁 } → ( 𝑁 ∈ 𝑒 ↔ 𝑁 ∈ { 𝑁 } ) ) | |
| 29 | 28 | rabsnif | ⊢ { 𝑒 ∈ { { 𝑁 } } ∣ 𝑁 ∈ 𝑒 } = if ( 𝑁 ∈ { 𝑁 } , { { 𝑁 } } , ∅ ) |
| 30 | 27 29 | eqtrdi | ⊢ ( 𝜑 → { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } = if ( 𝑁 ∈ { 𝑁 } , { { 𝑁 } } , ∅ ) ) |
| 31 | 30 | eqeq1d | ⊢ ( 𝜑 → ( { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } = { 𝑎 } ↔ if ( 𝑁 ∈ { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ) ) |
| 32 | 31 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑎 { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } = { 𝑎 } ↔ ∃ 𝑎 if ( 𝑁 ∈ { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ) ) |
| 33 | 25 32 | mpbird | ⊢ ( 𝜑 → ∃ 𝑎 { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } = { 𝑎 } ) |
| 34 | fvex | ⊢ ( Edg ‘ 𝐺 ) ∈ V | |
| 35 | 34 | rabex | ⊢ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } ∈ V |
| 36 | hash1snb | ⊢ ( { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } ∈ V → ( ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } ) = 1 ↔ ∃ 𝑎 { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } = { 𝑎 } ) ) | |
| 37 | 35 36 | ax-mp | ⊢ ( ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } ) = 1 ↔ ∃ 𝑎 { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } = { 𝑎 } ) |
| 38 | 33 37 | sylibr | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } ) = 1 ) |
| 39 | eqid | ⊢ { 𝑁 } = { 𝑁 } | |
| 40 | 39 | iftruei | ⊢ if ( { 𝑁 } = { 𝑁 } , { { 𝑁 } } , ∅ ) = { { 𝑁 } } |
| 41 | 40 | eqeq1i | ⊢ ( if ( { 𝑁 } = { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ↔ { { 𝑁 } } = { 𝑎 } ) |
| 42 | 41 | exbii | ⊢ ( ∃ 𝑎 if ( { 𝑁 } = { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ↔ ∃ 𝑎 { { 𝑁 } } = { 𝑎 } ) |
| 43 | 19 42 | sylibr | ⊢ ( 𝜑 → ∃ 𝑎 if ( { 𝑁 } = { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ) |
| 44 | 26 | rabeqdv | ⊢ ( 𝜑 → { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } = { 𝑒 ∈ { { 𝑁 } } ∣ 𝑒 = { 𝑁 } } ) |
| 45 | eqeq1 | ⊢ ( 𝑒 = { 𝑁 } → ( 𝑒 = { 𝑁 } ↔ { 𝑁 } = { 𝑁 } ) ) | |
| 46 | 45 | rabsnif | ⊢ { 𝑒 ∈ { { 𝑁 } } ∣ 𝑒 = { 𝑁 } } = if ( { 𝑁 } = { 𝑁 } , { { 𝑁 } } , ∅ ) |
| 47 | 44 46 | eqtrdi | ⊢ ( 𝜑 → { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } = if ( { 𝑁 } = { 𝑁 } , { { 𝑁 } } , ∅ ) ) |
| 48 | 47 | eqeq1d | ⊢ ( 𝜑 → ( { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } = { 𝑎 } ↔ if ( { 𝑁 } = { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ) ) |
| 49 | 48 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑎 { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } = { 𝑎 } ↔ ∃ 𝑎 if ( { 𝑁 } = { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ) ) |
| 50 | 43 49 | mpbird | ⊢ ( 𝜑 → ∃ 𝑎 { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } = { 𝑎 } ) |
| 51 | 34 | rabex | ⊢ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } ∈ V |
| 52 | hash1snb | ⊢ ( { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } ∈ V → ( ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } ) = 1 ↔ ∃ 𝑎 { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } = { 𝑎 } ) ) | |
| 53 | 51 52 | ax-mp | ⊢ ( ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } ) = 1 ↔ ∃ 𝑎 { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } = { 𝑎 } ) |
| 54 | 50 53 | sylibr | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } ) = 1 ) |
| 55 | 38 54 | oveq12d | ⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } ) +𝑒 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } ) ) = ( 1 +𝑒 1 ) ) |
| 56 | 1re | ⊢ 1 ∈ ℝ | |
| 57 | rexadd | ⊢ ( ( 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 1 +𝑒 1 ) = ( 1 + 1 ) ) | |
| 58 | 56 56 57 | mp2an | ⊢ ( 1 +𝑒 1 ) = ( 1 + 1 ) |
| 59 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 60 | 58 59 | eqtri | ⊢ ( 1 +𝑒 1 ) = 2 |
| 61 | 60 | a1i | ⊢ ( 𝜑 → ( 1 +𝑒 1 ) = 2 ) |
| 62 | 13 55 61 | 3eqtrd | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = 2 ) |