This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple pseudograph is an undirected simple hypergraph. (Contributed by AV, 19-Jan-2020) (Revised by AV, 15-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uspgrushgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | isuspgr | ⊢ ( 𝐺 ∈ USPGraph → ( 𝐺 ∈ USPGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 4 | ssrab2 | ⊢ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ⊆ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) | |
| 5 | f1ss | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ⊆ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) | |
| 6 | 4 5 | mpan2 | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
| 7 | 3 6 | biimtrdi | ⊢ ( 𝐺 ∈ USPGraph → ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
| 8 | 1 2 | isushgr | ⊢ ( 𝐺 ∈ USPGraph → ( 𝐺 ∈ USHGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
| 9 | 7 8 | sylibrd | ⊢ ( 𝐺 ∈ USPGraph → ( 𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph ) ) |
| 10 | 9 | pm2.43i | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph ) |