This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree of a one-edge graph, case 4: an edge from a vertex to itself contributes two to the vertex's degree. I. e. in a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has degree 2. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1loopgruspgr.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 1loopgruspgr.a | |- ( ph -> A e. X ) |
||
| 1loopgruspgr.n | |- ( ph -> N e. V ) |
||
| 1loopgruspgr.i | |- ( ph -> ( iEdg ` G ) = { <. A , { N } >. } ) |
||
| Assertion | 1loopgrvd2 | |- ( ph -> ( ( VtxDeg ` G ) ` N ) = 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1loopgruspgr.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 2 | 1loopgruspgr.a | |- ( ph -> A e. X ) |
|
| 3 | 1loopgruspgr.n | |- ( ph -> N e. V ) |
|
| 4 | 1loopgruspgr.i | |- ( ph -> ( iEdg ` G ) = { <. A , { N } >. } ) |
|
| 5 | 1 2 3 4 | 1loopgruspgr | |- ( ph -> G e. USPGraph ) |
| 6 | uspgrushgr | |- ( G e. USPGraph -> G e. USHGraph ) |
|
| 7 | 5 6 | syl | |- ( ph -> G e. USHGraph ) |
| 8 | 3 1 | eleqtrrd | |- ( ph -> N e. ( Vtx ` G ) ) |
| 9 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 10 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 11 | eqid | |- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
|
| 12 | 9 10 11 | vtxdushgrfvedg | |- ( ( G e. USHGraph /\ N e. ( Vtx ` G ) ) -> ( ( VtxDeg ` G ) ` N ) = ( ( # ` { e e. ( Edg ` G ) | N e. e } ) +e ( # ` { e e. ( Edg ` G ) | e = { N } } ) ) ) |
| 13 | 7 8 12 | syl2anc | |- ( ph -> ( ( VtxDeg ` G ) ` N ) = ( ( # ` { e e. ( Edg ` G ) | N e. e } ) +e ( # ` { e e. ( Edg ` G ) | e = { N } } ) ) ) |
| 14 | snex | |- { N } e. _V |
|
| 15 | sneq | |- ( a = { N } -> { a } = { { N } } ) |
|
| 16 | 15 | eqeq2d | |- ( a = { N } -> ( { { N } } = { a } <-> { { N } } = { { N } } ) ) |
| 17 | eqid | |- { { N } } = { { N } } |
|
| 18 | 14 16 17 | ceqsexv2d | |- E. a { { N } } = { a } |
| 19 | 18 | a1i | |- ( ph -> E. a { { N } } = { a } ) |
| 20 | snidg | |- ( N e. V -> N e. { N } ) |
|
| 21 | 3 20 | syl | |- ( ph -> N e. { N } ) |
| 22 | 21 | iftrued | |- ( ph -> if ( N e. { N } , { { N } } , (/) ) = { { N } } ) |
| 23 | 22 | eqeq1d | |- ( ph -> ( if ( N e. { N } , { { N } } , (/) ) = { a } <-> { { N } } = { a } ) ) |
| 24 | 23 | exbidv | |- ( ph -> ( E. a if ( N e. { N } , { { N } } , (/) ) = { a } <-> E. a { { N } } = { a } ) ) |
| 25 | 19 24 | mpbird | |- ( ph -> E. a if ( N e. { N } , { { N } } , (/) ) = { a } ) |
| 26 | 1 2 3 4 | 1loopgredg | |- ( ph -> ( Edg ` G ) = { { N } } ) |
| 27 | 26 | rabeqdv | |- ( ph -> { e e. ( Edg ` G ) | N e. e } = { e e. { { N } } | N e. e } ) |
| 28 | eleq2 | |- ( e = { N } -> ( N e. e <-> N e. { N } ) ) |
|
| 29 | 28 | rabsnif | |- { e e. { { N } } | N e. e } = if ( N e. { N } , { { N } } , (/) ) |
| 30 | 27 29 | eqtrdi | |- ( ph -> { e e. ( Edg ` G ) | N e. e } = if ( N e. { N } , { { N } } , (/) ) ) |
| 31 | 30 | eqeq1d | |- ( ph -> ( { e e. ( Edg ` G ) | N e. e } = { a } <-> if ( N e. { N } , { { N } } , (/) ) = { a } ) ) |
| 32 | 31 | exbidv | |- ( ph -> ( E. a { e e. ( Edg ` G ) | N e. e } = { a } <-> E. a if ( N e. { N } , { { N } } , (/) ) = { a } ) ) |
| 33 | 25 32 | mpbird | |- ( ph -> E. a { e e. ( Edg ` G ) | N e. e } = { a } ) |
| 34 | fvex | |- ( Edg ` G ) e. _V |
|
| 35 | 34 | rabex | |- { e e. ( Edg ` G ) | N e. e } e. _V |
| 36 | hash1snb | |- ( { e e. ( Edg ` G ) | N e. e } e. _V -> ( ( # ` { e e. ( Edg ` G ) | N e. e } ) = 1 <-> E. a { e e. ( Edg ` G ) | N e. e } = { a } ) ) |
|
| 37 | 35 36 | ax-mp | |- ( ( # ` { e e. ( Edg ` G ) | N e. e } ) = 1 <-> E. a { e e. ( Edg ` G ) | N e. e } = { a } ) |
| 38 | 33 37 | sylibr | |- ( ph -> ( # ` { e e. ( Edg ` G ) | N e. e } ) = 1 ) |
| 39 | eqid | |- { N } = { N } |
|
| 40 | 39 | iftruei | |- if ( { N } = { N } , { { N } } , (/) ) = { { N } } |
| 41 | 40 | eqeq1i | |- ( if ( { N } = { N } , { { N } } , (/) ) = { a } <-> { { N } } = { a } ) |
| 42 | 41 | exbii | |- ( E. a if ( { N } = { N } , { { N } } , (/) ) = { a } <-> E. a { { N } } = { a } ) |
| 43 | 19 42 | sylibr | |- ( ph -> E. a if ( { N } = { N } , { { N } } , (/) ) = { a } ) |
| 44 | 26 | rabeqdv | |- ( ph -> { e e. ( Edg ` G ) | e = { N } } = { e e. { { N } } | e = { N } } ) |
| 45 | eqeq1 | |- ( e = { N } -> ( e = { N } <-> { N } = { N } ) ) |
|
| 46 | 45 | rabsnif | |- { e e. { { N } } | e = { N } } = if ( { N } = { N } , { { N } } , (/) ) |
| 47 | 44 46 | eqtrdi | |- ( ph -> { e e. ( Edg ` G ) | e = { N } } = if ( { N } = { N } , { { N } } , (/) ) ) |
| 48 | 47 | eqeq1d | |- ( ph -> ( { e e. ( Edg ` G ) | e = { N } } = { a } <-> if ( { N } = { N } , { { N } } , (/) ) = { a } ) ) |
| 49 | 48 | exbidv | |- ( ph -> ( E. a { e e. ( Edg ` G ) | e = { N } } = { a } <-> E. a if ( { N } = { N } , { { N } } , (/) ) = { a } ) ) |
| 50 | 43 49 | mpbird | |- ( ph -> E. a { e e. ( Edg ` G ) | e = { N } } = { a } ) |
| 51 | 34 | rabex | |- { e e. ( Edg ` G ) | e = { N } } e. _V |
| 52 | hash1snb | |- ( { e e. ( Edg ` G ) | e = { N } } e. _V -> ( ( # ` { e e. ( Edg ` G ) | e = { N } } ) = 1 <-> E. a { e e. ( Edg ` G ) | e = { N } } = { a } ) ) |
|
| 53 | 51 52 | ax-mp | |- ( ( # ` { e e. ( Edg ` G ) | e = { N } } ) = 1 <-> E. a { e e. ( Edg ` G ) | e = { N } } = { a } ) |
| 54 | 50 53 | sylibr | |- ( ph -> ( # ` { e e. ( Edg ` G ) | e = { N } } ) = 1 ) |
| 55 | 38 54 | oveq12d | |- ( ph -> ( ( # ` { e e. ( Edg ` G ) | N e. e } ) +e ( # ` { e e. ( Edg ` G ) | e = { N } } ) ) = ( 1 +e 1 ) ) |
| 56 | 1re | |- 1 e. RR |
|
| 57 | rexadd | |- ( ( 1 e. RR /\ 1 e. RR ) -> ( 1 +e 1 ) = ( 1 + 1 ) ) |
|
| 58 | 56 56 57 | mp2an | |- ( 1 +e 1 ) = ( 1 + 1 ) |
| 59 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 60 | 58 59 | eqtri | |- ( 1 +e 1 ) = 2 |
| 61 | 60 | a1i | |- ( ph -> ( 1 +e 1 ) = 2 ) |
| 62 | 13 55 61 | 3eqtrd | |- ( ph -> ( ( VtxDeg ` G ) ` N ) = 2 ) |