This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the vertex degree function for a simple hypergraph. (Contributed by AV, 12-Dec-2020) (Proof shortened by AV, 5-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdushgrfvedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdushgrfvedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| vtxdushgrfvedg.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | ||
| Assertion | vtxdushgrfvedg | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) +𝑒 ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑒 = { 𝑈 } } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdushgrfvedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdushgrfvedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | vtxdushgrfvedg.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | |
| 4 | 3 | fveq1i | ⊢ ( 𝐷 ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) |
| 5 | 4 | a1i | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ) |
| 6 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 7 | eqid | ⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) | |
| 8 | 1 6 7 | vtxdgval | ⊢ ( 𝑈 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ) +𝑒 ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝑈 } } ) ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ) +𝑒 ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝑈 } } ) ) ) |
| 10 | 1 2 | vtxdushgrfvedglem | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ) = ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) ) |
| 11 | fvex | ⊢ ( iEdg ‘ 𝐺 ) ∈ V | |
| 12 | 11 | dmex | ⊢ dom ( iEdg ‘ 𝐺 ) ∈ V |
| 13 | 12 | rabex | ⊢ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝑈 } } ∈ V |
| 14 | 13 | a1i | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝑈 } } ∈ V ) |
| 15 | eqid | ⊢ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝑈 } } = { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝑈 } } | |
| 16 | eqeq1 | ⊢ ( 𝑒 = 𝑐 → ( 𝑒 = { 𝑈 } ↔ 𝑐 = { 𝑈 } ) ) | |
| 17 | 16 | cbvrabv | ⊢ { 𝑒 ∈ 𝐸 ∣ 𝑒 = { 𝑈 } } = { 𝑐 ∈ 𝐸 ∣ 𝑐 = { 𝑈 } } |
| 18 | eqid | ⊢ ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝑈 } } ↦ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝑈 } } ↦ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) | |
| 19 | 2 6 15 17 18 | ushgredgedgloop | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝑈 } } ↦ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) : { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝑈 } } –1-1-onto→ { 𝑒 ∈ 𝐸 ∣ 𝑒 = { 𝑈 } } ) |
| 20 | 14 19 | hasheqf1od | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝑈 } } ) = ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑒 = { 𝑈 } } ) ) |
| 21 | 10 20 | oveq12d | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ) +𝑒 ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝑈 } } ) ) = ( ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) +𝑒 ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑒 = { 𝑈 } } ) ) ) |
| 22 | 5 9 21 | 3eqtrd | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) +𝑒 ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑒 = { 𝑈 } } ) ) ) |