This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 5-Jun-2025) (Proof shortened by SN, 5-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsexv2d.1 | ⊢ 𝐴 ∈ V | |
| ceqsexv2d.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| ceqsexv2d.3 | ⊢ 𝜓 | ||
| Assertion | ceqsexv2d | ⊢ ∃ 𝑥 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsexv2d.1 | ⊢ 𝐴 ∈ V | |
| 2 | ceqsexv2d.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | ceqsexv2d.3 | ⊢ 𝜓 | |
| 4 | 1 | isseti | ⊢ ∃ 𝑥 𝑥 = 𝐴 |
| 5 | 3 2 | mpbiri | ⊢ ( 𝑥 = 𝐴 → 𝜑 ) |
| 6 | 4 5 | eximii | ⊢ ∃ 𝑥 𝜑 |