This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop is a singleton of a singleton. (Contributed by AV, 17-Dec-2020) (Revised by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1loopgruspgr.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 1loopgruspgr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| 1loopgruspgr.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) | ||
| 1loopgruspgr.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) | ||
| Assertion | 1loopgredg | ⊢ ( 𝜑 → ( Edg ‘ 𝐺 ) = { { 𝑁 } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1loopgruspgr.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 2 | 1loopgruspgr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 3 | 1loopgruspgr.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) | |
| 4 | 1loopgruspgr.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) | |
| 5 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 7 | 4 | rneqd | ⊢ ( 𝜑 → ran ( iEdg ‘ 𝐺 ) = ran { 〈 𝐴 , { 𝑁 } 〉 } ) |
| 8 | rnsnopg | ⊢ ( 𝐴 ∈ 𝑋 → ran { 〈 𝐴 , { 𝑁 } 〉 } = { { 𝑁 } } ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → ran { 〈 𝐴 , { 𝑁 } 〉 } = { { 𝑁 } } ) |
| 10 | 6 7 9 | 3eqtrd | ⊢ ( 𝜑 → ( Edg ‘ 𝐺 ) = { { 𝑁 } } ) |