This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree of a one-edge graph, case 1 (for a loop): a loop at a vertex other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1loopgruspgr.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 1loopgruspgr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| 1loopgruspgr.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) | ||
| 1loopgruspgr.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) | ||
| 1loopgrvd0.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) | ||
| Assertion | 1loopgrvd0 | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐾 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1loopgruspgr.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 2 | 1loopgruspgr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 3 | 1loopgruspgr.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) | |
| 4 | 1loopgruspgr.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) | |
| 5 | 1loopgrvd0.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) | |
| 6 | 5 | eldifbd | ⊢ ( 𝜑 → ¬ 𝐾 ∈ { 𝑁 } ) |
| 7 | snex | ⊢ { 𝑁 } ∈ V | |
| 8 | fvsng | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ { 𝑁 } ∈ V ) → ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) = { 𝑁 } ) | |
| 9 | 2 7 8 | sylancl | ⊢ ( 𝜑 → ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) = { 𝑁 } ) |
| 10 | 9 | eleq2d | ⊢ ( 𝜑 → ( 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) ↔ 𝐾 ∈ { 𝑁 } ) ) |
| 11 | 6 10 | mtbird | ⊢ ( 𝜑 → ¬ 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) ) |
| 12 | 4 | dmeqd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝐺 ) = dom { 〈 𝐴 , { 𝑁 } 〉 } ) |
| 13 | dmsnopg | ⊢ ( { 𝑁 } ∈ V → dom { 〈 𝐴 , { 𝑁 } 〉 } = { 𝐴 } ) | |
| 14 | 7 13 | mp1i | ⊢ ( 𝜑 → dom { 〈 𝐴 , { 𝑁 } 〉 } = { 𝐴 } ) |
| 15 | 12 14 | eqtrd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝐺 ) = { 𝐴 } ) |
| 16 | 4 | fveq1d | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝑖 ) ) |
| 17 | 16 | eleq2d | ⊢ ( 𝜑 → ( 𝐾 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ↔ 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝑖 ) ) ) |
| 18 | 15 17 | rexeqbidv | ⊢ ( 𝜑 → ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ { 𝐴 } 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝑖 ) ) ) |
| 19 | fveq2 | ⊢ ( 𝑖 = 𝐴 → ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝑖 ) = ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) ) | |
| 20 | 19 | eleq2d | ⊢ ( 𝑖 = 𝐴 → ( 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝑖 ) ↔ 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) ) ) |
| 21 | 20 | rexsng | ⊢ ( 𝐴 ∈ 𝑋 → ( ∃ 𝑖 ∈ { 𝐴 } 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝑖 ) ↔ 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) ) ) |
| 22 | 2 21 | syl | ⊢ ( 𝜑 → ( ∃ 𝑖 ∈ { 𝐴 } 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝑖 ) ↔ 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) ) ) |
| 23 | 18 22 | bitrd | ⊢ ( 𝜑 → ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ↔ 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) ) ) |
| 24 | 11 23 | mtbird | ⊢ ( 𝜑 → ¬ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
| 25 | 5 | eldifad | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
| 26 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ↔ 𝐾 ∈ 𝑉 ) ) |
| 27 | 25 26 | mpbird | ⊢ ( 𝜑 → 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) |
| 28 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 29 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 30 | eqid | ⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) | |
| 31 | 28 29 30 | vtxd0nedgb | ⊢ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐾 ) = 0 ↔ ¬ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 32 | 27 31 | syl | ⊢ ( 𝜑 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐾 ) = 0 ↔ ¬ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 33 | 24 32 | mpbird | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐾 ) = 0 ) |