This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a set is 1 if and only if it is a singleton (containing a set). (Contributed by Alexander van der Vekens, 7-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash1snb | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑎 𝑉 = { 𝑎 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( ( ♯ ‘ 𝑉 ) = 1 → ( ♯ ‘ 𝑉 ) = 1 ) | |
| 2 | hash1 | ⊢ ( ♯ ‘ 1o ) = 1 | |
| 3 | 1 2 | eqtr4di | ⊢ ( ( ♯ ‘ 𝑉 ) = 1 → ( ♯ ‘ 𝑉 ) = ( ♯ ‘ 1o ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝑉 ∈ Fin ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ♯ ‘ 𝑉 ) = ( ♯ ‘ 1o ) ) |
| 5 | 1onn | ⊢ 1o ∈ ω | |
| 6 | nnfi | ⊢ ( 1o ∈ ω → 1o ∈ Fin ) | |
| 7 | 5 6 | mp1i | ⊢ ( ( ♯ ‘ 𝑉 ) = 1 → 1o ∈ Fin ) |
| 8 | hashen | ⊢ ( ( 𝑉 ∈ Fin ∧ 1o ∈ Fin ) → ( ( ♯ ‘ 𝑉 ) = ( ♯ ‘ 1o ) ↔ 𝑉 ≈ 1o ) ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝑉 ∈ Fin ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ( ♯ ‘ 𝑉 ) = ( ♯ ‘ 1o ) ↔ 𝑉 ≈ 1o ) ) |
| 10 | 4 9 | mpbid | ⊢ ( ( 𝑉 ∈ Fin ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝑉 ≈ 1o ) |
| 11 | en1 | ⊢ ( 𝑉 ≈ 1o ↔ ∃ 𝑎 𝑉 = { 𝑎 } ) | |
| 12 | 10 11 | sylib | ⊢ ( ( 𝑉 ∈ Fin ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ∃ 𝑎 𝑉 = { 𝑎 } ) |
| 13 | 12 | ex | ⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) = 1 → ∃ 𝑎 𝑉 = { 𝑎 } ) ) |
| 14 | 13 | a1d | ⊢ ( 𝑉 ∈ Fin → ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 1 → ∃ 𝑎 𝑉 = { 𝑎 } ) ) ) |
| 15 | hashinf | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ¬ 𝑉 ∈ Fin ) → ( ♯ ‘ 𝑉 ) = +∞ ) | |
| 16 | eqeq1 | ⊢ ( ( ♯ ‘ 𝑉 ) = +∞ → ( ( ♯ ‘ 𝑉 ) = 1 ↔ +∞ = 1 ) ) | |
| 17 | 1re | ⊢ 1 ∈ ℝ | |
| 18 | renepnf | ⊢ ( 1 ∈ ℝ → 1 ≠ +∞ ) | |
| 19 | df-ne | ⊢ ( 1 ≠ +∞ ↔ ¬ 1 = +∞ ) | |
| 20 | pm2.21 | ⊢ ( ¬ 1 = +∞ → ( 1 = +∞ → ∃ 𝑎 𝑉 = { 𝑎 } ) ) | |
| 21 | 19 20 | sylbi | ⊢ ( 1 ≠ +∞ → ( 1 = +∞ → ∃ 𝑎 𝑉 = { 𝑎 } ) ) |
| 22 | 17 18 21 | mp2b | ⊢ ( 1 = +∞ → ∃ 𝑎 𝑉 = { 𝑎 } ) |
| 23 | 22 | eqcoms | ⊢ ( +∞ = 1 → ∃ 𝑎 𝑉 = { 𝑎 } ) |
| 24 | 16 23 | biimtrdi | ⊢ ( ( ♯ ‘ 𝑉 ) = +∞ → ( ( ♯ ‘ 𝑉 ) = 1 → ∃ 𝑎 𝑉 = { 𝑎 } ) ) |
| 25 | 15 24 | syl | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ ¬ 𝑉 ∈ Fin ) → ( ( ♯ ‘ 𝑉 ) = 1 → ∃ 𝑎 𝑉 = { 𝑎 } ) ) |
| 26 | 25 | expcom | ⊢ ( ¬ 𝑉 ∈ Fin → ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 1 → ∃ 𝑎 𝑉 = { 𝑎 } ) ) ) |
| 27 | 14 26 | pm2.61i | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 1 → ∃ 𝑎 𝑉 = { 𝑎 } ) ) |
| 28 | fveq2 | ⊢ ( 𝑉 = { 𝑎 } → ( ♯ ‘ 𝑉 ) = ( ♯ ‘ { 𝑎 } ) ) | |
| 29 | hashsng | ⊢ ( 𝑎 ∈ V → ( ♯ ‘ { 𝑎 } ) = 1 ) | |
| 30 | 29 | elv | ⊢ ( ♯ ‘ { 𝑎 } ) = 1 |
| 31 | 28 30 | eqtrdi | ⊢ ( 𝑉 = { 𝑎 } → ( ♯ ‘ 𝑉 ) = 1 ) |
| 32 | 31 | exlimiv | ⊢ ( ∃ 𝑎 𝑉 = { 𝑎 } → ( ♯ ‘ 𝑉 ) = 1 ) |
| 33 | 27 32 | impbid1 | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑎 𝑉 = { 𝑎 } ) ) |