This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A graph with one edge which is a loop is a simple pseudograph (see also uspgr1v1eop ). (Contributed by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1loopgruspgr.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 1loopgruspgr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| 1loopgruspgr.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) | ||
| 1loopgruspgr.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) | ||
| Assertion | 1loopgruspgr | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1loopgruspgr.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 2 | 1loopgruspgr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 3 | 1loopgruspgr.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) | |
| 4 | 1loopgruspgr.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) | |
| 5 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 6 | 3 1 | eleqtrrd | ⊢ ( 𝜑 → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
| 7 | dfsn2 | ⊢ { 𝑁 } = { 𝑁 , 𝑁 } | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → { 𝑁 } = { 𝑁 , 𝑁 } ) |
| 9 | 8 | opeq2d | ⊢ ( 𝜑 → 〈 𝐴 , { 𝑁 } 〉 = 〈 𝐴 , { 𝑁 , 𝑁 } 〉 ) |
| 10 | 9 | sneqd | ⊢ ( 𝜑 → { 〈 𝐴 , { 𝑁 } 〉 } = { 〈 𝐴 , { 𝑁 , 𝑁 } 〉 } ) |
| 11 | 4 10 | eqtrd | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 , 𝑁 } 〉 } ) |
| 12 | 5 2 6 6 11 | uspgr1e | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |