This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a disjoint collection: if B ( X ) = C and B ( Y ) = D , and X =/= Y , then C and D are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disji.1 | |- ( x = X -> B = C ) |
|
| disji.2 | |- ( x = Y -> B = D ) |
||
| Assertion | disji2 | |- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) /\ X =/= Y ) -> ( C i^i D ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disji.1 | |- ( x = X -> B = C ) |
|
| 2 | disji.2 | |- ( x = Y -> B = D ) |
|
| 3 | df-ne | |- ( X =/= Y <-> -. X = Y ) |
|
| 4 | disjors | |- ( Disj_ x e. A B <-> A. y e. A A. z e. A ( y = z \/ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) ) |
|
| 5 | eqeq1 | |- ( y = X -> ( y = z <-> X = z ) ) |
|
| 6 | nfcv | |- F/_ x X |
|
| 7 | nfcv | |- F/_ x C |
|
| 8 | 6 7 1 | csbhypf | |- ( y = X -> [_ y / x ]_ B = C ) |
| 9 | 8 | ineq1d | |- ( y = X -> ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = ( C i^i [_ z / x ]_ B ) ) |
| 10 | 9 | eqeq1d | |- ( y = X -> ( ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) <-> ( C i^i [_ z / x ]_ B ) = (/) ) ) |
| 11 | 5 10 | orbi12d | |- ( y = X -> ( ( y = z \/ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) <-> ( X = z \/ ( C i^i [_ z / x ]_ B ) = (/) ) ) ) |
| 12 | eqeq2 | |- ( z = Y -> ( X = z <-> X = Y ) ) |
|
| 13 | nfcv | |- F/_ x Y |
|
| 14 | nfcv | |- F/_ x D |
|
| 15 | 13 14 2 | csbhypf | |- ( z = Y -> [_ z / x ]_ B = D ) |
| 16 | 15 | ineq2d | |- ( z = Y -> ( C i^i [_ z / x ]_ B ) = ( C i^i D ) ) |
| 17 | 16 | eqeq1d | |- ( z = Y -> ( ( C i^i [_ z / x ]_ B ) = (/) <-> ( C i^i D ) = (/) ) ) |
| 18 | 12 17 | orbi12d | |- ( z = Y -> ( ( X = z \/ ( C i^i [_ z / x ]_ B ) = (/) ) <-> ( X = Y \/ ( C i^i D ) = (/) ) ) ) |
| 19 | 11 18 | rspc2v | |- ( ( X e. A /\ Y e. A ) -> ( A. y e. A A. z e. A ( y = z \/ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) -> ( X = Y \/ ( C i^i D ) = (/) ) ) ) |
| 20 | 4 19 | biimtrid | |- ( ( X e. A /\ Y e. A ) -> ( Disj_ x e. A B -> ( X = Y \/ ( C i^i D ) = (/) ) ) ) |
| 21 | 20 | impcom | |- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) ) -> ( X = Y \/ ( C i^i D ) = (/) ) ) |
| 22 | 21 | ord | |- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) ) -> ( -. X = Y -> ( C i^i D ) = (/) ) ) |
| 23 | 3 22 | biimtrid | |- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) ) -> ( X =/= Y -> ( C i^i D ) = (/) ) ) |
| 24 | 23 | 3impia | |- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) /\ X =/= Y ) -> ( C i^i D ) = (/) ) |