This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A union of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unmbl | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( A u. B ) e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mblss | |- ( A e. dom vol -> A C_ RR ) |
|
| 2 | mblss | |- ( B e. dom vol -> B C_ RR ) |
|
| 3 | 1 2 | anim12i | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( A C_ RR /\ B C_ RR ) ) |
| 4 | unss | |- ( ( A C_ RR /\ B C_ RR ) <-> ( A u. B ) C_ RR ) |
|
| 5 | 3 4 | sylib | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( A u. B ) C_ RR ) |
| 6 | elpwi | |- ( x e. ~P RR -> x C_ RR ) |
|
| 7 | inss1 | |- ( x i^i ( A u. B ) ) C_ x |
|
| 8 | ovolsscl | |- ( ( ( x i^i ( A u. B ) ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( A u. B ) ) ) e. RR ) |
|
| 9 | 7 8 | mp3an1 | |- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( A u. B ) ) ) e. RR ) |
| 10 | 9 | adantl | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x i^i ( A u. B ) ) ) e. RR ) |
| 11 | inss1 | |- ( x i^i A ) C_ x |
|
| 12 | ovolsscl | |- ( ( ( x i^i A ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i A ) ) e. RR ) |
|
| 13 | 11 12 | mp3an1 | |- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i A ) ) e. RR ) |
| 14 | 13 | adantl | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x i^i A ) ) e. RR ) |
| 15 | inss1 | |- ( ( x \ A ) i^i B ) C_ ( x \ A ) |
|
| 16 | difss | |- ( x \ A ) C_ x |
|
| 17 | simprl | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> x C_ RR ) |
|
| 18 | 16 17 | sstrid | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( x \ A ) C_ RR ) |
| 19 | ovolsscl | |- ( ( ( x \ A ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) |
|
| 20 | 16 19 | mp3an1 | |- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) |
| 21 | 20 | adantl | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x \ A ) ) e. RR ) |
| 22 | ovolsscl | |- ( ( ( ( x \ A ) i^i B ) C_ ( x \ A ) /\ ( x \ A ) C_ RR /\ ( vol* ` ( x \ A ) ) e. RR ) -> ( vol* ` ( ( x \ A ) i^i B ) ) e. RR ) |
|
| 23 | 15 18 21 22 | mp3an2i | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( ( x \ A ) i^i B ) ) e. RR ) |
| 24 | 14 23 | readdcld | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( ( x \ A ) i^i B ) ) ) e. RR ) |
| 25 | difss | |- ( x \ ( A u. B ) ) C_ x |
|
| 26 | ovolsscl | |- ( ( ( x \ ( A u. B ) ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ ( A u. B ) ) ) e. RR ) |
|
| 27 | 25 26 | mp3an1 | |- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ ( A u. B ) ) ) e. RR ) |
| 28 | 27 | adantl | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x \ ( A u. B ) ) ) e. RR ) |
| 29 | incom | |- ( ( x \ A ) i^i B ) = ( B i^i ( x \ A ) ) |
|
| 30 | indifcom | |- ( B i^i ( x \ A ) ) = ( x i^i ( B \ A ) ) |
|
| 31 | 29 30 | eqtri | |- ( ( x \ A ) i^i B ) = ( x i^i ( B \ A ) ) |
| 32 | 31 | uneq2i | |- ( ( x i^i A ) u. ( ( x \ A ) i^i B ) ) = ( ( x i^i A ) u. ( x i^i ( B \ A ) ) ) |
| 33 | indi | |- ( x i^i ( A u. ( B \ A ) ) ) = ( ( x i^i A ) u. ( x i^i ( B \ A ) ) ) |
|
| 34 | undif2 | |- ( A u. ( B \ A ) ) = ( A u. B ) |
|
| 35 | 34 | ineq2i | |- ( x i^i ( A u. ( B \ A ) ) ) = ( x i^i ( A u. B ) ) |
| 36 | 32 33 35 | 3eqtr2ri | |- ( x i^i ( A u. B ) ) = ( ( x i^i A ) u. ( ( x \ A ) i^i B ) ) |
| 37 | 36 | fveq2i | |- ( vol* ` ( x i^i ( A u. B ) ) ) = ( vol* ` ( ( x i^i A ) u. ( ( x \ A ) i^i B ) ) ) |
| 38 | 11 17 | sstrid | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( x i^i A ) C_ RR ) |
| 39 | 15 18 | sstrid | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( x \ A ) i^i B ) C_ RR ) |
| 40 | ovolun | |- ( ( ( ( x i^i A ) C_ RR /\ ( vol* ` ( x i^i A ) ) e. RR ) /\ ( ( ( x \ A ) i^i B ) C_ RR /\ ( vol* ` ( ( x \ A ) i^i B ) ) e. RR ) ) -> ( vol* ` ( ( x i^i A ) u. ( ( x \ A ) i^i B ) ) ) <_ ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( ( x \ A ) i^i B ) ) ) ) |
|
| 41 | 38 14 39 23 40 | syl22anc | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( ( x i^i A ) u. ( ( x \ A ) i^i B ) ) ) <_ ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( ( x \ A ) i^i B ) ) ) ) |
| 42 | 37 41 | eqbrtrid | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x i^i ( A u. B ) ) ) <_ ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( ( x \ A ) i^i B ) ) ) ) |
| 43 | 10 24 28 42 | leadd1dd | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( vol* ` ( x i^i ( A u. B ) ) ) + ( vol* ` ( x \ ( A u. B ) ) ) ) <_ ( ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( ( x \ A ) i^i B ) ) ) + ( vol* ` ( x \ ( A u. B ) ) ) ) ) |
| 44 | simplr | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> B e. dom vol ) |
|
| 45 | mblsplit | |- ( ( B e. dom vol /\ ( x \ A ) C_ RR /\ ( vol* ` ( x \ A ) ) e. RR ) -> ( vol* ` ( x \ A ) ) = ( ( vol* ` ( ( x \ A ) i^i B ) ) + ( vol* ` ( ( x \ A ) \ B ) ) ) ) |
|
| 46 | 44 18 21 45 | syl3anc | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x \ A ) ) = ( ( vol* ` ( ( x \ A ) i^i B ) ) + ( vol* ` ( ( x \ A ) \ B ) ) ) ) |
| 47 | difun1 | |- ( x \ ( A u. B ) ) = ( ( x \ A ) \ B ) |
|
| 48 | 47 | fveq2i | |- ( vol* ` ( x \ ( A u. B ) ) ) = ( vol* ` ( ( x \ A ) \ B ) ) |
| 49 | 48 | oveq2i | |- ( ( vol* ` ( ( x \ A ) i^i B ) ) + ( vol* ` ( x \ ( A u. B ) ) ) ) = ( ( vol* ` ( ( x \ A ) i^i B ) ) + ( vol* ` ( ( x \ A ) \ B ) ) ) |
| 50 | 46 49 | eqtr4di | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x \ A ) ) = ( ( vol* ` ( ( x \ A ) i^i B ) ) + ( vol* ` ( x \ ( A u. B ) ) ) ) ) |
| 51 | 50 | oveq2d | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) = ( ( vol* ` ( x i^i A ) ) + ( ( vol* ` ( ( x \ A ) i^i B ) ) + ( vol* ` ( x \ ( A u. B ) ) ) ) ) ) |
| 52 | simpll | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> A e. dom vol ) |
|
| 53 | simprr | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` x ) e. RR ) |
|
| 54 | mblsplit | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) |
|
| 55 | 52 17 53 54 | syl3anc | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) |
| 56 | 14 | recnd | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x i^i A ) ) e. CC ) |
| 57 | 23 | recnd | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( ( x \ A ) i^i B ) ) e. CC ) |
| 58 | 28 | recnd | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x \ ( A u. B ) ) ) e. CC ) |
| 59 | 56 57 58 | addassd | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( ( x \ A ) i^i B ) ) ) + ( vol* ` ( x \ ( A u. B ) ) ) ) = ( ( vol* ` ( x i^i A ) ) + ( ( vol* ` ( ( x \ A ) i^i B ) ) + ( vol* ` ( x \ ( A u. B ) ) ) ) ) ) |
| 60 | 51 55 59 | 3eqtr4d | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` x ) = ( ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( ( x \ A ) i^i B ) ) ) + ( vol* ` ( x \ ( A u. B ) ) ) ) ) |
| 61 | 43 60 | breqtrrd | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( vol* ` ( x i^i ( A u. B ) ) ) + ( vol* ` ( x \ ( A u. B ) ) ) ) <_ ( vol* ` x ) ) |
| 62 | 61 | expr | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ x C_ RR ) -> ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i ( A u. B ) ) ) + ( vol* ` ( x \ ( A u. B ) ) ) ) <_ ( vol* ` x ) ) ) |
| 63 | 6 62 | sylan2 | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ x e. ~P RR ) -> ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i ( A u. B ) ) ) + ( vol* ` ( x \ ( A u. B ) ) ) ) <_ ( vol* ` x ) ) ) |
| 64 | 63 | ralrimiva | |- ( ( A e. dom vol /\ B e. dom vol ) -> A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i ( A u. B ) ) ) + ( vol* ` ( x \ ( A u. B ) ) ) ) <_ ( vol* ` x ) ) ) |
| 65 | ismbl2 | |- ( ( A u. B ) e. dom vol <-> ( ( A u. B ) C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i ( A u. B ) ) ) + ( vol* ` ( x \ ( A u. B ) ) ) ) <_ ( vol* ` x ) ) ) ) |
|
| 66 | 5 64 65 | sylanbrc | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( A u. B ) e. dom vol ) |