This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The signs of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 24-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sincosq1sgn | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | |- 0 e. RR* |
|
| 2 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 3 | 2 | rexri | |- ( _pi / 2 ) e. RR* |
| 4 | elioo2 | |- ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( A e. ( 0 (,) ( _pi / 2 ) ) <-> ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) ) ) |
|
| 5 | 1 3 4 | mp2an | |- ( A e. ( 0 (,) ( _pi / 2 ) ) <-> ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) ) |
| 6 | sincosq1lem | |- ( ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) -> 0 < ( sin ` A ) ) |
|
| 7 | resubcl | |- ( ( ( _pi / 2 ) e. RR /\ A e. RR ) -> ( ( _pi / 2 ) - A ) e. RR ) |
|
| 8 | 2 7 | mpan | |- ( A e. RR -> ( ( _pi / 2 ) - A ) e. RR ) |
| 9 | sincosq1lem | |- ( ( ( ( _pi / 2 ) - A ) e. RR /\ 0 < ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) < ( _pi / 2 ) ) -> 0 < ( sin ` ( ( _pi / 2 ) - A ) ) ) |
|
| 10 | 8 9 | syl3an1 | |- ( ( A e. RR /\ 0 < ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) < ( _pi / 2 ) ) -> 0 < ( sin ` ( ( _pi / 2 ) - A ) ) ) |
| 11 | 10 | 3expib | |- ( A e. RR -> ( ( 0 < ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) < ( _pi / 2 ) ) -> 0 < ( sin ` ( ( _pi / 2 ) - A ) ) ) ) |
| 12 | 0re | |- 0 e. RR |
|
| 13 | ltsub13 | |- ( ( 0 e. RR /\ ( _pi / 2 ) e. RR /\ A e. RR ) -> ( 0 < ( ( _pi / 2 ) - A ) <-> A < ( ( _pi / 2 ) - 0 ) ) ) |
|
| 14 | 12 2 13 | mp3an12 | |- ( A e. RR -> ( 0 < ( ( _pi / 2 ) - A ) <-> A < ( ( _pi / 2 ) - 0 ) ) ) |
| 15 | 2 | recni | |- ( _pi / 2 ) e. CC |
| 16 | 15 | subid1i | |- ( ( _pi / 2 ) - 0 ) = ( _pi / 2 ) |
| 17 | 16 | breq2i | |- ( A < ( ( _pi / 2 ) - 0 ) <-> A < ( _pi / 2 ) ) |
| 18 | 14 17 | bitrdi | |- ( A e. RR -> ( 0 < ( ( _pi / 2 ) - A ) <-> A < ( _pi / 2 ) ) ) |
| 19 | ltsub23 | |- ( ( ( _pi / 2 ) e. RR /\ A e. RR /\ ( _pi / 2 ) e. RR ) -> ( ( ( _pi / 2 ) - A ) < ( _pi / 2 ) <-> ( ( _pi / 2 ) - ( _pi / 2 ) ) < A ) ) |
|
| 20 | 2 2 19 | mp3an13 | |- ( A e. RR -> ( ( ( _pi / 2 ) - A ) < ( _pi / 2 ) <-> ( ( _pi / 2 ) - ( _pi / 2 ) ) < A ) ) |
| 21 | 15 | subidi | |- ( ( _pi / 2 ) - ( _pi / 2 ) ) = 0 |
| 22 | 21 | breq1i | |- ( ( ( _pi / 2 ) - ( _pi / 2 ) ) < A <-> 0 < A ) |
| 23 | 20 22 | bitrdi | |- ( A e. RR -> ( ( ( _pi / 2 ) - A ) < ( _pi / 2 ) <-> 0 < A ) ) |
| 24 | 18 23 | anbi12d | |- ( A e. RR -> ( ( 0 < ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) < ( _pi / 2 ) ) <-> ( A < ( _pi / 2 ) /\ 0 < A ) ) ) |
| 25 | 24 | biancomd | |- ( A e. RR -> ( ( 0 < ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) < ( _pi / 2 ) ) <-> ( 0 < A /\ A < ( _pi / 2 ) ) ) ) |
| 26 | recn | |- ( A e. RR -> A e. CC ) |
|
| 27 | sinhalfpim | |- ( A e. CC -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( cos ` A ) ) |
|
| 28 | 26 27 | syl | |- ( A e. RR -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( cos ` A ) ) |
| 29 | 28 | breq2d | |- ( A e. RR -> ( 0 < ( sin ` ( ( _pi / 2 ) - A ) ) <-> 0 < ( cos ` A ) ) ) |
| 30 | 11 25 29 | 3imtr3d | |- ( A e. RR -> ( ( 0 < A /\ A < ( _pi / 2 ) ) -> 0 < ( cos ` A ) ) ) |
| 31 | 30 | 3impib | |- ( ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) -> 0 < ( cos ` A ) ) |
| 32 | 6 31 | jca | |- ( ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) |
| 33 | 5 32 | sylbi | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) |