This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltord.1 | |- ( x = y -> A = B ) |
|
| ltord.2 | |- ( x = C -> A = M ) |
||
| ltord.3 | |- ( x = D -> A = N ) |
||
| ltord.4 | |- S C_ RR |
||
| ltord.5 | |- ( ( ph /\ x e. S ) -> A e. RR ) |
||
| ltord.6 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x < y -> A < B ) ) |
||
| Assertion | ltord1 | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C < D <-> M < N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltord.1 | |- ( x = y -> A = B ) |
|
| 2 | ltord.2 | |- ( x = C -> A = M ) |
|
| 3 | ltord.3 | |- ( x = D -> A = N ) |
|
| 4 | ltord.4 | |- S C_ RR |
|
| 5 | ltord.5 | |- ( ( ph /\ x e. S ) -> A e. RR ) |
|
| 6 | ltord.6 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x < y -> A < B ) ) |
|
| 7 | 1 2 3 4 5 6 | ltordlem | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C < D -> M < N ) ) |
| 8 | eqeq1 | |- ( x = C -> ( x = D <-> C = D ) ) |
|
| 9 | 2 | eqeq1d | |- ( x = C -> ( A = N <-> M = N ) ) |
| 10 | 8 9 | imbi12d | |- ( x = C -> ( ( x = D -> A = N ) <-> ( C = D -> M = N ) ) ) |
| 11 | 10 3 | vtoclg | |- ( C e. S -> ( C = D -> M = N ) ) |
| 12 | 11 | ad2antrl | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C = D -> M = N ) ) |
| 13 | 1 3 2 4 5 6 | ltordlem | |- ( ( ph /\ ( D e. S /\ C e. S ) ) -> ( D < C -> N < M ) ) |
| 14 | 13 | ancom2s | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( D < C -> N < M ) ) |
| 15 | 12 14 | orim12d | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( ( C = D \/ D < C ) -> ( M = N \/ N < M ) ) ) |
| 16 | 15 | con3d | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( -. ( M = N \/ N < M ) -> -. ( C = D \/ D < C ) ) ) |
| 17 | 5 | ralrimiva | |- ( ph -> A. x e. S A e. RR ) |
| 18 | 2 | eleq1d | |- ( x = C -> ( A e. RR <-> M e. RR ) ) |
| 19 | 18 | rspccva | |- ( ( A. x e. S A e. RR /\ C e. S ) -> M e. RR ) |
| 20 | 17 19 | sylan | |- ( ( ph /\ C e. S ) -> M e. RR ) |
| 21 | 3 | eleq1d | |- ( x = D -> ( A e. RR <-> N e. RR ) ) |
| 22 | 21 | rspccva | |- ( ( A. x e. S A e. RR /\ D e. S ) -> N e. RR ) |
| 23 | 17 22 | sylan | |- ( ( ph /\ D e. S ) -> N e. RR ) |
| 24 | 20 23 | anim12dan | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( M e. RR /\ N e. RR ) ) |
| 25 | axlttri | |- ( ( M e. RR /\ N e. RR ) -> ( M < N <-> -. ( M = N \/ N < M ) ) ) |
|
| 26 | 24 25 | syl | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( M < N <-> -. ( M = N \/ N < M ) ) ) |
| 27 | 4 | sseli | |- ( C e. S -> C e. RR ) |
| 28 | 4 | sseli | |- ( D e. S -> D e. RR ) |
| 29 | axlttri | |- ( ( C e. RR /\ D e. RR ) -> ( C < D <-> -. ( C = D \/ D < C ) ) ) |
|
| 30 | 27 28 29 | syl2an | |- ( ( C e. S /\ D e. S ) -> ( C < D <-> -. ( C = D \/ D < C ) ) ) |
| 31 | 30 | adantl | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C < D <-> -. ( C = D \/ D < C ) ) ) |
| 32 | 16 26 31 | 3imtr4d | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( M < N -> C < D ) ) |
| 33 | 7 32 | impbid | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C < D <-> M < N ) ) |