This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division of a positive number by both sides of 'less than'. (Contributed by NM, 27-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltdiv2 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( C / B ) < ( C / A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrec | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A < B <-> ( 1 / B ) < ( 1 / A ) ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( 1 / B ) < ( 1 / A ) ) ) |
| 3 | gt0ne0 | |- ( ( B e. RR /\ 0 < B ) -> B =/= 0 ) |
|
| 4 | rereccl | |- ( ( B e. RR /\ B =/= 0 ) -> ( 1 / B ) e. RR ) |
|
| 5 | 3 4 | syldan | |- ( ( B e. RR /\ 0 < B ) -> ( 1 / B ) e. RR ) |
| 6 | gt0ne0 | |- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
|
| 7 | rereccl | |- ( ( A e. RR /\ A =/= 0 ) -> ( 1 / A ) e. RR ) |
|
| 8 | 6 7 | syldan | |- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. RR ) |
| 9 | ltmul2 | |- ( ( ( 1 / B ) e. RR /\ ( 1 / A ) e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( 1 / B ) < ( 1 / A ) <-> ( C x. ( 1 / B ) ) < ( C x. ( 1 / A ) ) ) ) |
|
| 10 | 8 9 | syl3an2 | |- ( ( ( 1 / B ) e. RR /\ ( A e. RR /\ 0 < A ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( 1 / B ) < ( 1 / A ) <-> ( C x. ( 1 / B ) ) < ( C x. ( 1 / A ) ) ) ) |
| 11 | 5 10 | syl3an1 | |- ( ( ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( 1 / B ) < ( 1 / A ) <-> ( C x. ( 1 / B ) ) < ( C x. ( 1 / A ) ) ) ) |
| 12 | recn | |- ( C e. RR -> C e. CC ) |
|
| 13 | 12 | adantr | |- ( ( C e. RR /\ 0 < C ) -> C e. CC ) |
| 14 | recn | |- ( B e. RR -> B e. CC ) |
|
| 15 | 14 | adantr | |- ( ( B e. RR /\ 0 < B ) -> B e. CC ) |
| 16 | 15 3 | jca | |- ( ( B e. RR /\ 0 < B ) -> ( B e. CC /\ B =/= 0 ) ) |
| 17 | recn | |- ( A e. RR -> A e. CC ) |
|
| 18 | 17 | adantr | |- ( ( A e. RR /\ 0 < A ) -> A e. CC ) |
| 19 | 18 6 | jca | |- ( ( A e. RR /\ 0 < A ) -> ( A e. CC /\ A =/= 0 ) ) |
| 20 | divrec | |- ( ( C e. CC /\ B e. CC /\ B =/= 0 ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
|
| 21 | 20 | 3expb | |- ( ( C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
| 22 | 21 | 3adant3 | |- ( ( C e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
| 23 | divrec | |- ( ( C e. CC /\ A e. CC /\ A =/= 0 ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
|
| 24 | 23 | 3expb | |- ( ( C e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
| 25 | 24 | 3adant2 | |- ( ( C e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
| 26 | 22 25 | breq12d | |- ( ( C e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( C / B ) < ( C / A ) <-> ( C x. ( 1 / B ) ) < ( C x. ( 1 / A ) ) ) ) |
| 27 | 13 16 19 26 | syl3an | |- ( ( ( C e. RR /\ 0 < C ) /\ ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) ) -> ( ( C / B ) < ( C / A ) <-> ( C x. ( 1 / B ) ) < ( C x. ( 1 / A ) ) ) ) |
| 28 | 27 | 3coml | |- ( ( ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( C / B ) < ( C / A ) <-> ( C x. ( 1 / B ) ) < ( C x. ( 1 / A ) ) ) ) |
| 29 | 11 28 | bitr4d | |- ( ( ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( 1 / B ) < ( 1 / A ) <-> ( C / B ) < ( C / A ) ) ) |
| 30 | 29 | 3com12 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( 1 / B ) < ( 1 / A ) <-> ( C / B ) < ( C / A ) ) ) |
| 31 | 2 30 | bitrd | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( C / B ) < ( C / A ) ) ) |