This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosine is decreasing over the closed interval from 0 to _pi . (Contributed by Paul Chapman, 16-Mar-2008) (Proof shortened by Mario Carneiro, 10-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosord | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( A < B <-> ( cos ` B ) < ( cos ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) /\ A < B ) -> A e. ( 0 [,] _pi ) ) |
|
| 2 | simplr | |- ( ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) /\ A < B ) -> B e. ( 0 [,] _pi ) ) |
|
| 3 | simpr | |- ( ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) /\ A < B ) -> A < B ) |
|
| 4 | 1 2 3 | cosordlem | |- ( ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) /\ A < B ) -> ( cos ` B ) < ( cos ` A ) ) |
| 5 | 4 | ex | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( A < B -> ( cos ` B ) < ( cos ` A ) ) ) |
| 6 | fveq2 | |- ( A = B -> ( cos ` A ) = ( cos ` B ) ) |
|
| 7 | 6 | eqcomd | |- ( A = B -> ( cos ` B ) = ( cos ` A ) ) |
| 8 | 7 | a1i | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( A = B -> ( cos ` B ) = ( cos ` A ) ) ) |
| 9 | simplr | |- ( ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) /\ B < A ) -> B e. ( 0 [,] _pi ) ) |
|
| 10 | simpll | |- ( ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) /\ B < A ) -> A e. ( 0 [,] _pi ) ) |
|
| 11 | simpr | |- ( ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) /\ B < A ) -> B < A ) |
|
| 12 | 9 10 11 | cosordlem | |- ( ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) /\ B < A ) -> ( cos ` A ) < ( cos ` B ) ) |
| 13 | 12 | ex | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( B < A -> ( cos ` A ) < ( cos ` B ) ) ) |
| 14 | 8 13 | orim12d | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( ( A = B \/ B < A ) -> ( ( cos ` B ) = ( cos ` A ) \/ ( cos ` A ) < ( cos ` B ) ) ) ) |
| 15 | 14 | con3d | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( -. ( ( cos ` B ) = ( cos ` A ) \/ ( cos ` A ) < ( cos ` B ) ) -> -. ( A = B \/ B < A ) ) ) |
| 16 | 0re | |- 0 e. RR |
|
| 17 | pire | |- _pi e. RR |
|
| 18 | 16 17 | elicc2i | |- ( A e. ( 0 [,] _pi ) <-> ( A e. RR /\ 0 <_ A /\ A <_ _pi ) ) |
| 19 | 18 | simp1bi | |- ( A e. ( 0 [,] _pi ) -> A e. RR ) |
| 20 | 16 17 | elicc2i | |- ( B e. ( 0 [,] _pi ) <-> ( B e. RR /\ 0 <_ B /\ B <_ _pi ) ) |
| 21 | 20 | simp1bi | |- ( B e. ( 0 [,] _pi ) -> B e. RR ) |
| 22 | recoscl | |- ( B e. RR -> ( cos ` B ) e. RR ) |
|
| 23 | recoscl | |- ( A e. RR -> ( cos ` A ) e. RR ) |
|
| 24 | axlttri | |- ( ( ( cos ` B ) e. RR /\ ( cos ` A ) e. RR ) -> ( ( cos ` B ) < ( cos ` A ) <-> -. ( ( cos ` B ) = ( cos ` A ) \/ ( cos ` A ) < ( cos ` B ) ) ) ) |
|
| 25 | 22 23 24 | syl2anr | |- ( ( A e. RR /\ B e. RR ) -> ( ( cos ` B ) < ( cos ` A ) <-> -. ( ( cos ` B ) = ( cos ` A ) \/ ( cos ` A ) < ( cos ` B ) ) ) ) |
| 26 | 19 21 25 | syl2an | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( ( cos ` B ) < ( cos ` A ) <-> -. ( ( cos ` B ) = ( cos ` A ) \/ ( cos ` A ) < ( cos ` B ) ) ) ) |
| 27 | axlttri | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
|
| 28 | 19 21 27 | syl2an | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
| 29 | 15 26 28 | 3imtr4d | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( ( cos ` B ) < ( cos ` A ) -> A < B ) ) |
| 30 | 5 29 | impbid | |- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( A < B <-> ( cos ` B ) < ( cos ` A ) ) ) |