This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of a number strictly between -upi / 2 and pi / 2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosq14gt0 | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( cos ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 2 | elioore | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. RR ) |
|
| 3 | resubcl | |- ( ( ( _pi / 2 ) e. RR /\ A e. RR ) -> ( ( _pi / 2 ) - A ) e. RR ) |
|
| 4 | 1 2 3 | sylancr | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) e. RR ) |
| 5 | neghalfpirx | |- -u ( _pi / 2 ) e. RR* |
|
| 6 | 1 | rexri | |- ( _pi / 2 ) e. RR* |
| 7 | elioo2 | |- ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( A e. RR /\ -u ( _pi / 2 ) < A /\ A < ( _pi / 2 ) ) ) ) |
|
| 8 | 5 6 7 | mp2an | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( A e. RR /\ -u ( _pi / 2 ) < A /\ A < ( _pi / 2 ) ) ) |
| 9 | 8 | simp3bi | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A < ( _pi / 2 ) ) |
| 10 | posdif | |- ( ( A e. RR /\ ( _pi / 2 ) e. RR ) -> ( A < ( _pi / 2 ) <-> 0 < ( ( _pi / 2 ) - A ) ) ) |
|
| 11 | 2 1 10 | sylancl | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( A < ( _pi / 2 ) <-> 0 < ( ( _pi / 2 ) - A ) ) ) |
| 12 | 9 11 | mpbid | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( ( _pi / 2 ) - A ) ) |
| 13 | picn | |- _pi e. CC |
|
| 14 | halfcl | |- ( _pi e. CC -> ( _pi / 2 ) e. CC ) |
|
| 15 | 13 14 | ax-mp | |- ( _pi / 2 ) e. CC |
| 16 | 15 | negcli | |- -u ( _pi / 2 ) e. CC |
| 17 | 13 15 | negsubi | |- ( _pi + -u ( _pi / 2 ) ) = ( _pi - ( _pi / 2 ) ) |
| 18 | pidiv2halves | |- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
|
| 19 | 13 15 15 18 | subaddrii | |- ( _pi - ( _pi / 2 ) ) = ( _pi / 2 ) |
| 20 | 17 19 | eqtri | |- ( _pi + -u ( _pi / 2 ) ) = ( _pi / 2 ) |
| 21 | 15 13 16 20 | subaddrii | |- ( ( _pi / 2 ) - _pi ) = -u ( _pi / 2 ) |
| 22 | 8 | simp2bi | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> -u ( _pi / 2 ) < A ) |
| 23 | 21 22 | eqbrtrid | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - _pi ) < A ) |
| 24 | pire | |- _pi e. RR |
|
| 25 | ltsub23 | |- ( ( ( _pi / 2 ) e. RR /\ A e. RR /\ _pi e. RR ) -> ( ( ( _pi / 2 ) - A ) < _pi <-> ( ( _pi / 2 ) - _pi ) < A ) ) |
|
| 26 | 1 24 25 | mp3an13 | |- ( A e. RR -> ( ( ( _pi / 2 ) - A ) < _pi <-> ( ( _pi / 2 ) - _pi ) < A ) ) |
| 27 | 2 26 | syl | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( ( _pi / 2 ) - A ) < _pi <-> ( ( _pi / 2 ) - _pi ) < A ) ) |
| 28 | 23 27 | mpbird | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) < _pi ) |
| 29 | 0xr | |- 0 e. RR* |
|
| 30 | 24 | rexri | |- _pi e. RR* |
| 31 | elioo2 | |- ( ( 0 e. RR* /\ _pi e. RR* ) -> ( ( ( _pi / 2 ) - A ) e. ( 0 (,) _pi ) <-> ( ( ( _pi / 2 ) - A ) e. RR /\ 0 < ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) < _pi ) ) ) |
|
| 32 | 29 30 31 | mp2an | |- ( ( ( _pi / 2 ) - A ) e. ( 0 (,) _pi ) <-> ( ( ( _pi / 2 ) - A ) e. RR /\ 0 < ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) < _pi ) ) |
| 33 | 4 12 28 32 | syl3anbrc | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) e. ( 0 (,) _pi ) ) |
| 34 | sinq12gt0 | |- ( ( ( _pi / 2 ) - A ) e. ( 0 (,) _pi ) -> 0 < ( sin ` ( ( _pi / 2 ) - A ) ) ) |
|
| 35 | 33 34 | syl | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( sin ` ( ( _pi / 2 ) - A ) ) ) |
| 36 | 2 | recnd | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. CC ) |
| 37 | sinhalfpim | |- ( A e. CC -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( cos ` A ) ) |
|
| 38 | 36 37 | syl | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( cos ` A ) ) |
| 39 | 35 38 | breqtrd | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( cos ` A ) ) |