This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sine is increasing over the closed interval from -u (pi / 2 ) to ( pi / 2 ) . (Contributed by Mario Carneiro, 29-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinord | |- ( ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) /\ B e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( A < B <-> ( sin ` A ) < ( sin ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neghalfpire | |- -u ( _pi / 2 ) e. RR |
|
| 2 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 3 | iccssre | |- ( ( -u ( _pi / 2 ) e. RR /\ ( _pi / 2 ) e. RR ) -> ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) C_ RR ) |
|
| 4 | 1 2 3 | mp2an | |- ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) C_ RR |
| 5 | 4 | sseli | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> A e. RR ) |
| 6 | 4 | sseli | |- ( B e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> B e. RR ) |
| 7 | ltsub2 | |- ( ( A e. RR /\ B e. RR /\ ( _pi / 2 ) e. RR ) -> ( A < B <-> ( ( _pi / 2 ) - B ) < ( ( _pi / 2 ) - A ) ) ) |
|
| 8 | 2 7 | mp3an3 | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( ( _pi / 2 ) - B ) < ( ( _pi / 2 ) - A ) ) ) |
| 9 | 5 6 8 | syl2an | |- ( ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) /\ B e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( A < B <-> ( ( _pi / 2 ) - B ) < ( ( _pi / 2 ) - A ) ) ) |
| 10 | oveq2 | |- ( x = B -> ( ( _pi / 2 ) - x ) = ( ( _pi / 2 ) - B ) ) |
|
| 11 | 10 | eleq1d | |- ( x = B -> ( ( ( _pi / 2 ) - x ) e. ( 0 [,] _pi ) <-> ( ( _pi / 2 ) - B ) e. ( 0 [,] _pi ) ) ) |
| 12 | 4 | sseli | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> x e. RR ) |
| 13 | resubcl | |- ( ( ( _pi / 2 ) e. RR /\ x e. RR ) -> ( ( _pi / 2 ) - x ) e. RR ) |
|
| 14 | 2 12 13 | sylancr | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - x ) e. RR ) |
| 15 | 1 2 | elicc2i | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( x e. RR /\ -u ( _pi / 2 ) <_ x /\ x <_ ( _pi / 2 ) ) ) |
| 16 | 15 | simp3bi | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> x <_ ( _pi / 2 ) ) |
| 17 | subge0 | |- ( ( ( _pi / 2 ) e. RR /\ x e. RR ) -> ( 0 <_ ( ( _pi / 2 ) - x ) <-> x <_ ( _pi / 2 ) ) ) |
|
| 18 | 2 12 17 | sylancr | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( 0 <_ ( ( _pi / 2 ) - x ) <-> x <_ ( _pi / 2 ) ) ) |
| 19 | 16 18 | mpbird | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( ( _pi / 2 ) - x ) ) |
| 20 | 15 | simp2bi | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> -u ( _pi / 2 ) <_ x ) |
| 21 | lesub2 | |- ( ( -u ( _pi / 2 ) e. RR /\ x e. RR /\ ( _pi / 2 ) e. RR ) -> ( -u ( _pi / 2 ) <_ x <-> ( ( _pi / 2 ) - x ) <_ ( ( _pi / 2 ) - -u ( _pi / 2 ) ) ) ) |
|
| 22 | 1 2 21 | mp3an13 | |- ( x e. RR -> ( -u ( _pi / 2 ) <_ x <-> ( ( _pi / 2 ) - x ) <_ ( ( _pi / 2 ) - -u ( _pi / 2 ) ) ) ) |
| 23 | 12 22 | syl | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( -u ( _pi / 2 ) <_ x <-> ( ( _pi / 2 ) - x ) <_ ( ( _pi / 2 ) - -u ( _pi / 2 ) ) ) ) |
| 24 | 20 23 | mpbid | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - x ) <_ ( ( _pi / 2 ) - -u ( _pi / 2 ) ) ) |
| 25 | 2 | recni | |- ( _pi / 2 ) e. CC |
| 26 | 25 25 | subnegi | |- ( ( _pi / 2 ) - -u ( _pi / 2 ) ) = ( ( _pi / 2 ) + ( _pi / 2 ) ) |
| 27 | pidiv2halves | |- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
|
| 28 | 26 27 | eqtri | |- ( ( _pi / 2 ) - -u ( _pi / 2 ) ) = _pi |
| 29 | 24 28 | breqtrdi | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - x ) <_ _pi ) |
| 30 | 0re | |- 0 e. RR |
|
| 31 | pire | |- _pi e. RR |
|
| 32 | 30 31 | elicc2i | |- ( ( ( _pi / 2 ) - x ) e. ( 0 [,] _pi ) <-> ( ( ( _pi / 2 ) - x ) e. RR /\ 0 <_ ( ( _pi / 2 ) - x ) /\ ( ( _pi / 2 ) - x ) <_ _pi ) ) |
| 33 | 14 19 29 32 | syl3anbrc | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - x ) e. ( 0 [,] _pi ) ) |
| 34 | 11 33 | vtoclga | |- ( B e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - B ) e. ( 0 [,] _pi ) ) |
| 35 | oveq2 | |- ( x = A -> ( ( _pi / 2 ) - x ) = ( ( _pi / 2 ) - A ) ) |
|
| 36 | 35 | eleq1d | |- ( x = A -> ( ( ( _pi / 2 ) - x ) e. ( 0 [,] _pi ) <-> ( ( _pi / 2 ) - A ) e. ( 0 [,] _pi ) ) ) |
| 37 | 36 33 | vtoclga | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) e. ( 0 [,] _pi ) ) |
| 38 | cosord | |- ( ( ( ( _pi / 2 ) - B ) e. ( 0 [,] _pi ) /\ ( ( _pi / 2 ) - A ) e. ( 0 [,] _pi ) ) -> ( ( ( _pi / 2 ) - B ) < ( ( _pi / 2 ) - A ) <-> ( cos ` ( ( _pi / 2 ) - A ) ) < ( cos ` ( ( _pi / 2 ) - B ) ) ) ) |
|
| 39 | 34 37 38 | syl2anr | |- ( ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) /\ B e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( ( ( _pi / 2 ) - B ) < ( ( _pi / 2 ) - A ) <-> ( cos ` ( ( _pi / 2 ) - A ) ) < ( cos ` ( ( _pi / 2 ) - B ) ) ) ) |
| 40 | 5 | recnd | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> A e. CC ) |
| 41 | coshalfpim | |- ( A e. CC -> ( cos ` ( ( _pi / 2 ) - A ) ) = ( sin ` A ) ) |
|
| 42 | 40 41 | syl | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( cos ` ( ( _pi / 2 ) - A ) ) = ( sin ` A ) ) |
| 43 | 6 | recnd | |- ( B e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> B e. CC ) |
| 44 | coshalfpim | |- ( B e. CC -> ( cos ` ( ( _pi / 2 ) - B ) ) = ( sin ` B ) ) |
|
| 45 | 43 44 | syl | |- ( B e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( cos ` ( ( _pi / 2 ) - B ) ) = ( sin ` B ) ) |
| 46 | 42 45 | breqan12d | |- ( ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) /\ B e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( ( cos ` ( ( _pi / 2 ) - A ) ) < ( cos ` ( ( _pi / 2 ) - B ) ) <-> ( sin ` A ) < ( sin ` B ) ) ) |
| 47 | 9 39 46 | 3bitrd | |- ( ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) /\ B e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( A < B <-> ( sin ` A ) < ( sin ` B ) ) ) |