This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| ixxss1.2 | |- P = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x T z /\ z S y ) } ) |
||
| ixxss1.3 | |- ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) -> ( ( A W B /\ B T w ) -> A R w ) ) |
||
| Assertion | ixxss1 | |- ( ( A e. RR* /\ A W B ) -> ( B P C ) C_ ( A O C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| 2 | ixxss1.2 | |- P = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x T z /\ z S y ) } ) |
|
| 3 | ixxss1.3 | |- ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) -> ( ( A W B /\ B T w ) -> A R w ) ) |
|
| 4 | 2 | elixx3g | |- ( w e. ( B P C ) <-> ( ( B e. RR* /\ C e. RR* /\ w e. RR* ) /\ ( B T w /\ w S C ) ) ) |
| 5 | 4 | simplbi | |- ( w e. ( B P C ) -> ( B e. RR* /\ C e. RR* /\ w e. RR* ) ) |
| 6 | 5 | adantl | |- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> ( B e. RR* /\ C e. RR* /\ w e. RR* ) ) |
| 7 | 6 | simp3d | |- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> w e. RR* ) |
| 8 | simplr | |- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> A W B ) |
|
| 9 | 4 | simprbi | |- ( w e. ( B P C ) -> ( B T w /\ w S C ) ) |
| 10 | 9 | adantl | |- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> ( B T w /\ w S C ) ) |
| 11 | 10 | simpld | |- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> B T w ) |
| 12 | simpll | |- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> A e. RR* ) |
|
| 13 | 6 | simp1d | |- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> B e. RR* ) |
| 14 | 12 13 7 3 | syl3anc | |- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> ( ( A W B /\ B T w ) -> A R w ) ) |
| 15 | 8 11 14 | mp2and | |- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> A R w ) |
| 16 | 10 | simprd | |- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> w S C ) |
| 17 | 6 | simp2d | |- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> C e. RR* ) |
| 18 | 1 | elixx1 | |- ( ( A e. RR* /\ C e. RR* ) -> ( w e. ( A O C ) <-> ( w e. RR* /\ A R w /\ w S C ) ) ) |
| 19 | 12 17 18 | syl2anc | |- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> ( w e. ( A O C ) <-> ( w e. RR* /\ A R w /\ w S C ) ) ) |
| 20 | 7 15 16 19 | mpbir3and | |- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> w e. ( A O C ) ) |
| 21 | 20 | ex | |- ( ( A e. RR* /\ A W B ) -> ( w e. ( B P C ) -> w e. ( A O C ) ) ) |
| 22 | 21 | ssrdv | |- ( ( A e. RR* /\ A W B ) -> ( B P C ) C_ ( A O C ) ) |