This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanval | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> A e. CC ) |
|
| 2 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 3 | 2 | anim1i | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) ) |
| 4 | eldifsn | |- ( ( cos ` A ) e. ( CC \ { 0 } ) <-> ( ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) ) |
|
| 5 | 3 4 | sylibr | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) e. ( CC \ { 0 } ) ) |
| 6 | cosf | |- cos : CC --> CC |
|
| 7 | ffn | |- ( cos : CC --> CC -> cos Fn CC ) |
|
| 8 | elpreima | |- ( cos Fn CC -> ( A e. ( `' cos " ( CC \ { 0 } ) ) <-> ( A e. CC /\ ( cos ` A ) e. ( CC \ { 0 } ) ) ) ) |
|
| 9 | 6 7 8 | mp2b | |- ( A e. ( `' cos " ( CC \ { 0 } ) ) <-> ( A e. CC /\ ( cos ` A ) e. ( CC \ { 0 } ) ) ) |
| 10 | 1 5 9 | sylanbrc | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> A e. ( `' cos " ( CC \ { 0 } ) ) ) |
| 11 | fveq2 | |- ( x = A -> ( sin ` x ) = ( sin ` A ) ) |
|
| 12 | fveq2 | |- ( x = A -> ( cos ` x ) = ( cos ` A ) ) |
|
| 13 | 11 12 | oveq12d | |- ( x = A -> ( ( sin ` x ) / ( cos ` x ) ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
| 14 | df-tan | |- tan = ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( sin ` x ) / ( cos ` x ) ) ) |
|
| 15 | ovex | |- ( ( sin ` A ) / ( cos ` A ) ) e. _V |
|
| 16 | 13 14 15 | fvmpt | |- ( A e. ( `' cos " ( CC \ { 0 } ) ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
| 17 | 10 16 | syl | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |