This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sylow1 . One of the orbits of the group action has p-adic valuation less than the prime count of the set S . (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylow1.x | |- X = ( Base ` G ) |
|
| sylow1.g | |- ( ph -> G e. Grp ) |
||
| sylow1.f | |- ( ph -> X e. Fin ) |
||
| sylow1.p | |- ( ph -> P e. Prime ) |
||
| sylow1.n | |- ( ph -> N e. NN0 ) |
||
| sylow1.d | |- ( ph -> ( P ^ N ) || ( # ` X ) ) |
||
| sylow1lem.a | |- .+ = ( +g ` G ) |
||
| sylow1lem.s | |- S = { s e. ~P X | ( # ` s ) = ( P ^ N ) } |
||
| sylow1lem.m | |- .(+) = ( x e. X , y e. S |-> ran ( z e. y |-> ( x .+ z ) ) ) |
||
| sylow1lem3.1 | |- .~ = { <. x , y >. | ( { x , y } C_ S /\ E. g e. X ( g .(+) x ) = y ) } |
||
| Assertion | sylow1lem3 | |- ( ph -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylow1.x | |- X = ( Base ` G ) |
|
| 2 | sylow1.g | |- ( ph -> G e. Grp ) |
|
| 3 | sylow1.f | |- ( ph -> X e. Fin ) |
|
| 4 | sylow1.p | |- ( ph -> P e. Prime ) |
|
| 5 | sylow1.n | |- ( ph -> N e. NN0 ) |
|
| 6 | sylow1.d | |- ( ph -> ( P ^ N ) || ( # ` X ) ) |
|
| 7 | sylow1lem.a | |- .+ = ( +g ` G ) |
|
| 8 | sylow1lem.s | |- S = { s e. ~P X | ( # ` s ) = ( P ^ N ) } |
|
| 9 | sylow1lem.m | |- .(+) = ( x e. X , y e. S |-> ran ( z e. y |-> ( x .+ z ) ) ) |
|
| 10 | sylow1lem3.1 | |- .~ = { <. x , y >. | ( { x , y } C_ S /\ E. g e. X ( g .(+) x ) = y ) } |
|
| 11 | 1 2 3 4 5 6 7 8 | sylow1lem1 | |- ( ph -> ( ( # ` S ) e. NN /\ ( P pCnt ( # ` S ) ) = ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 12 | 11 | simpld | |- ( ph -> ( # ` S ) e. NN ) |
| 13 | pcndvds | |- ( ( P e. Prime /\ ( # ` S ) e. NN ) -> -. ( P ^ ( ( P pCnt ( # ` S ) ) + 1 ) ) || ( # ` S ) ) |
|
| 14 | 4 12 13 | syl2anc | |- ( ph -> -. ( P ^ ( ( P pCnt ( # ` S ) ) + 1 ) ) || ( # ` S ) ) |
| 15 | 11 | simprd | |- ( ph -> ( P pCnt ( # ` S ) ) = ( ( P pCnt ( # ` X ) ) - N ) ) |
| 16 | 15 | oveq1d | |- ( ph -> ( ( P pCnt ( # ` S ) ) + 1 ) = ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) |
| 17 | 16 | oveq2d | |- ( ph -> ( P ^ ( ( P pCnt ( # ` S ) ) + 1 ) ) = ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) ) |
| 18 | 1 2 3 4 5 6 7 8 9 | sylow1lem2 | |- ( ph -> .(+) e. ( G GrpAct S ) ) |
| 19 | 10 1 | gaorber | |- ( .(+) e. ( G GrpAct S ) -> .~ Er S ) |
| 20 | 18 19 | syl | |- ( ph -> .~ Er S ) |
| 21 | pwfi | |- ( X e. Fin <-> ~P X e. Fin ) |
|
| 22 | 3 21 | sylib | |- ( ph -> ~P X e. Fin ) |
| 23 | 8 | ssrab3 | |- S C_ ~P X |
| 24 | ssfi | |- ( ( ~P X e. Fin /\ S C_ ~P X ) -> S e. Fin ) |
|
| 25 | 22 23 24 | sylancl | |- ( ph -> S e. Fin ) |
| 26 | 20 25 | qshash | |- ( ph -> ( # ` S ) = sum_ z e. ( S /. .~ ) ( # ` z ) ) |
| 27 | 17 26 | breq12d | |- ( ph -> ( ( P ^ ( ( P pCnt ( # ` S ) ) + 1 ) ) || ( # ` S ) <-> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || sum_ z e. ( S /. .~ ) ( # ` z ) ) ) |
| 28 | 14 27 | mtbid | |- ( ph -> -. ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || sum_ z e. ( S /. .~ ) ( # ` z ) ) |
| 29 | pwfi | |- ( S e. Fin <-> ~P S e. Fin ) |
|
| 30 | 25 29 | sylib | |- ( ph -> ~P S e. Fin ) |
| 31 | 20 | qsss | |- ( ph -> ( S /. .~ ) C_ ~P S ) |
| 32 | 30 31 | ssfid | |- ( ph -> ( S /. .~ ) e. Fin ) |
| 33 | 32 | adantr | |- ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) -> ( S /. .~ ) e. Fin ) |
| 34 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 35 | 4 34 | syl | |- ( ph -> P e. NN ) |
| 36 | 4 12 | pccld | |- ( ph -> ( P pCnt ( # ` S ) ) e. NN0 ) |
| 37 | 15 36 | eqeltrrd | |- ( ph -> ( ( P pCnt ( # ` X ) ) - N ) e. NN0 ) |
| 38 | peano2nn0 | |- ( ( ( P pCnt ( # ` X ) ) - N ) e. NN0 -> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) e. NN0 ) |
|
| 39 | 37 38 | syl | |- ( ph -> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) e. NN0 ) |
| 40 | 35 39 | nnexpcld | |- ( ph -> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) e. NN ) |
| 41 | 40 | nnzd | |- ( ph -> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) e. ZZ ) |
| 42 | 41 | adantr | |- ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) -> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) e. ZZ ) |
| 43 | erdm | |- ( .~ Er S -> dom .~ = S ) |
|
| 44 | 20 43 | syl | |- ( ph -> dom .~ = S ) |
| 45 | elqsn0 | |- ( ( dom .~ = S /\ z e. ( S /. .~ ) ) -> z =/= (/) ) |
|
| 46 | 44 45 | sylan | |- ( ( ph /\ z e. ( S /. .~ ) ) -> z =/= (/) ) |
| 47 | 25 | adantr | |- ( ( ph /\ z e. ( S /. .~ ) ) -> S e. Fin ) |
| 48 | 31 | sselda | |- ( ( ph /\ z e. ( S /. .~ ) ) -> z e. ~P S ) |
| 49 | 48 | elpwid | |- ( ( ph /\ z e. ( S /. .~ ) ) -> z C_ S ) |
| 50 | 47 49 | ssfid | |- ( ( ph /\ z e. ( S /. .~ ) ) -> z e. Fin ) |
| 51 | hashnncl | |- ( z e. Fin -> ( ( # ` z ) e. NN <-> z =/= (/) ) ) |
|
| 52 | 50 51 | syl | |- ( ( ph /\ z e. ( S /. .~ ) ) -> ( ( # ` z ) e. NN <-> z =/= (/) ) ) |
| 53 | 46 52 | mpbird | |- ( ( ph /\ z e. ( S /. .~ ) ) -> ( # ` z ) e. NN ) |
| 54 | 53 | adantlr | |- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( # ` z ) e. NN ) |
| 55 | 54 | nnzd | |- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( # ` z ) e. ZZ ) |
| 56 | fveq2 | |- ( a = z -> ( # ` a ) = ( # ` z ) ) |
|
| 57 | 56 | oveq2d | |- ( a = z -> ( P pCnt ( # ` a ) ) = ( P pCnt ( # ` z ) ) ) |
| 58 | 57 | breq1d | |- ( a = z -> ( ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) <-> ( P pCnt ( # ` z ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 59 | 58 | notbid | |- ( a = z -> ( -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) <-> -. ( P pCnt ( # ` z ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 60 | 59 | rspccva | |- ( ( A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) /\ z e. ( S /. .~ ) ) -> -. ( P pCnt ( # ` z ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
| 61 | 60 | adantll | |- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> -. ( P pCnt ( # ` z ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
| 62 | 1 | grpbn0 | |- ( G e. Grp -> X =/= (/) ) |
| 63 | 2 62 | syl | |- ( ph -> X =/= (/) ) |
| 64 | hashnncl | |- ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
|
| 65 | 3 64 | syl | |- ( ph -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
| 66 | 63 65 | mpbird | |- ( ph -> ( # ` X ) e. NN ) |
| 67 | 4 66 | pccld | |- ( ph -> ( P pCnt ( # ` X ) ) e. NN0 ) |
| 68 | 67 | nn0zd | |- ( ph -> ( P pCnt ( # ` X ) ) e. ZZ ) |
| 69 | 5 | nn0zd | |- ( ph -> N e. ZZ ) |
| 70 | 68 69 | zsubcld | |- ( ph -> ( ( P pCnt ( # ` X ) ) - N ) e. ZZ ) |
| 71 | 70 | ad2antrr | |- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( P pCnt ( # ` X ) ) - N ) e. ZZ ) |
| 72 | 71 | zred | |- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( P pCnt ( # ` X ) ) - N ) e. RR ) |
| 73 | 4 | ad2antrr | |- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> P e. Prime ) |
| 74 | 73 54 | pccld | |- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( P pCnt ( # ` z ) ) e. NN0 ) |
| 75 | 74 | nn0zd | |- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( P pCnt ( # ` z ) ) e. ZZ ) |
| 76 | 75 | zred | |- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( P pCnt ( # ` z ) ) e. RR ) |
| 77 | 72 76 | ltnled | |- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( ( P pCnt ( # ` X ) ) - N ) < ( P pCnt ( # ` z ) ) <-> -. ( P pCnt ( # ` z ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 78 | 61 77 | mpbird | |- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( P pCnt ( # ` X ) ) - N ) < ( P pCnt ( # ` z ) ) ) |
| 79 | zltp1le | |- ( ( ( ( P pCnt ( # ` X ) ) - N ) e. ZZ /\ ( P pCnt ( # ` z ) ) e. ZZ ) -> ( ( ( P pCnt ( # ` X ) ) - N ) < ( P pCnt ( # ` z ) ) <-> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) <_ ( P pCnt ( # ` z ) ) ) ) |
|
| 80 | 71 75 79 | syl2anc | |- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( ( P pCnt ( # ` X ) ) - N ) < ( P pCnt ( # ` z ) ) <-> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) <_ ( P pCnt ( # ` z ) ) ) ) |
| 81 | 78 80 | mpbid | |- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) <_ ( P pCnt ( # ` z ) ) ) |
| 82 | 39 | ad2antrr | |- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) e. NN0 ) |
| 83 | pcdvdsb | |- ( ( P e. Prime /\ ( # ` z ) e. ZZ /\ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) e. NN0 ) -> ( ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) <_ ( P pCnt ( # ` z ) ) <-> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || ( # ` z ) ) ) |
|
| 84 | 73 55 82 83 | syl3anc | |- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) <_ ( P pCnt ( # ` z ) ) <-> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || ( # ` z ) ) ) |
| 85 | 81 84 | mpbid | |- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || ( # ` z ) ) |
| 86 | 33 42 55 85 | fsumdvds | |- ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) -> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || sum_ z e. ( S /. .~ ) ( # ` z ) ) |
| 87 | 28 86 | mtand | |- ( ph -> -. A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
| 88 | dfrex2 | |- ( E. a e. ( S /. .~ ) ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) <-> -. A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
|
| 89 | 87 88 | sylibr | |- ( ph -> E. a e. ( S /. .~ ) ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
| 90 | eqid | |- ( S /. .~ ) = ( S /. .~ ) |
|
| 91 | fveq2 | |- ( [ z ] .~ = a -> ( # ` [ z ] .~ ) = ( # ` a ) ) |
|
| 92 | 91 | oveq2d | |- ( [ z ] .~ = a -> ( P pCnt ( # ` [ z ] .~ ) ) = ( P pCnt ( # ` a ) ) ) |
| 93 | 92 | breq1d | |- ( [ z ] .~ = a -> ( ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) <-> ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 94 | 93 | imbi1d | |- ( [ z ] .~ = a -> ( ( ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) <-> ( ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) ) |
| 95 | eceq1 | |- ( w = z -> [ w ] .~ = [ z ] .~ ) |
|
| 96 | 95 | fveq2d | |- ( w = z -> ( # ` [ w ] .~ ) = ( # ` [ z ] .~ ) ) |
| 97 | 96 | oveq2d | |- ( w = z -> ( P pCnt ( # ` [ w ] .~ ) ) = ( P pCnt ( # ` [ z ] .~ ) ) ) |
| 98 | 97 | breq1d | |- ( w = z -> ( ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) <-> ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 99 | 98 | rspcev | |- ( ( z e. S /\ ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
| 100 | 99 | ex | |- ( z e. S -> ( ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 101 | 100 | adantl | |- ( ( ph /\ z e. S ) -> ( ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 102 | 90 94 101 | ectocld | |- ( ( ph /\ a e. ( S /. .~ ) ) -> ( ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 103 | 102 | rexlimdva | |- ( ph -> ( E. a e. ( S /. .~ ) ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 104 | 89 103 | mpd | |- ( ph -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |