This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a set with an equivalence relation is the sum of the cardinalities of its equivalence classes. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qshash.1 | |- ( ph -> .~ Er A ) |
|
| qshash.2 | |- ( ph -> A e. Fin ) |
||
| Assertion | qshash | |- ( ph -> ( # ` A ) = sum_ x e. ( A /. .~ ) ( # ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qshash.1 | |- ( ph -> .~ Er A ) |
|
| 2 | qshash.2 | |- ( ph -> A e. Fin ) |
|
| 3 | erex | |- ( .~ Er A -> ( A e. Fin -> .~ e. _V ) ) |
|
| 4 | 1 2 3 | sylc | |- ( ph -> .~ e. _V ) |
| 5 | 1 4 | uniqs2 | |- ( ph -> U. ( A /. .~ ) = A ) |
| 6 | 5 | fveq2d | |- ( ph -> ( # ` U. ( A /. .~ ) ) = ( # ` A ) ) |
| 7 | pwfi | |- ( A e. Fin <-> ~P A e. Fin ) |
|
| 8 | 2 7 | sylib | |- ( ph -> ~P A e. Fin ) |
| 9 | 1 | qsss | |- ( ph -> ( A /. .~ ) C_ ~P A ) |
| 10 | 8 9 | ssfid | |- ( ph -> ( A /. .~ ) e. Fin ) |
| 11 | elpwi | |- ( x e. ~P A -> x C_ A ) |
|
| 12 | ssfi | |- ( ( A e. Fin /\ x C_ A ) -> x e. Fin ) |
|
| 13 | 12 | ex | |- ( A e. Fin -> ( x C_ A -> x e. Fin ) ) |
| 14 | 2 11 13 | syl2im | |- ( ph -> ( x e. ~P A -> x e. Fin ) ) |
| 15 | 14 | ssrdv | |- ( ph -> ~P A C_ Fin ) |
| 16 | 9 15 | sstrd | |- ( ph -> ( A /. .~ ) C_ Fin ) |
| 17 | qsdisj2 | |- ( .~ Er A -> Disj_ x e. ( A /. .~ ) x ) |
|
| 18 | 1 17 | syl | |- ( ph -> Disj_ x e. ( A /. .~ ) x ) |
| 19 | 10 16 18 | hashuni | |- ( ph -> ( # ` U. ( A /. .~ ) ) = sum_ x e. ( A /. .~ ) ( # ` x ) ) |
| 20 | 6 19 | eqtr3d | |- ( ph -> ( # ` A ) = sum_ x e. ( A /. .~ ) ( # ` x ) ) |